This documentation is automatically generated by online-judge-tools/verification-helper
#include "library/convolution/min_plus_convolution.hpp"
#ifndef SUISEN_MIN_PLUS_CONVOLUTION
#define SUISEN_MIN_PLUS_CONVOLUTION
#include <cassert>
#include <cstddef>
#include <limits>
#include <vector>
#include "library/algorithm/monotone_minima.hpp"
namespace suisen {
template <typename T>
std::vector<T> min_plus_convolution_convex_convex(const std::vector<T> &a, const std::vector<T> &b) {
const int n = a.size(), m = b.size();
assert(n and m);
// check if convex
for (int i = 2; i < n; ++i) assert(a[i - 1] - a[i - 2] <= a[i] - a[i - 1]);
// check if convex
for (int j = 2; j < m; ++j) assert(b[j - 1] - b[j - 2] <= b[j] - b[j - 1]);
std::vector<T> c(n + m - 1);
c[0] = a[0] + b[0];
for (int k = 0, i = 0; k < n + m - 2; ++k) {
int j = k - i;
if (j == m - 1 or (i < n - 1 and a[i + 1] + b[j] < a[i] + b[j + 1])) {
c[k + 1] = a[++i] + b[j];
} else {
c[k + 1] = a[i] + b[++j];
}
}
return c;
}
template <typename T>
std::vector<T> min_plus_convolution_convex_arbitrary(const std::vector<T> &a, const std::vector<T> &b) {
const int n = a.size(), m = b.size();
assert(n and m);
// check if convex
for (int i = 2; i < n; ++i) assert(a[i - 1] - a[i - 2] <= a[i] - a[i - 1]);
std::vector<int> argmin = monotone_minima(
n + m - 1, m,
[&](int k, int j1, int j2) {
const int i1 = k - j1, i2 = k - j2;
// upper right triangle
if (i2 < 0) return true;
// lower left triangle
if (i1 >= n) return false;
return a[i1] + b[j1] < a[i2] + b[j2];
}
);
std::vector<T> c(n + m - 1);
for (int k = 0; k < n + m - 1; ++k) {
const int j = argmin[k], i = k - j;
c[k] = a[i] + b[j];
}
return c;
}
} // namespace suisen
#endif // SUISEN_MIN_PLUS_CONVOLUTION
#line 1 "library/convolution/min_plus_convolution.hpp"
#include <cassert>
#include <cstddef>
#include <limits>
#include <vector>
#line 1 "library/algorithm/monotone_minima.hpp"
#line 7 "library/algorithm/monotone_minima.hpp"
namespace suisen {
/**
* @param n # rows
* @param m # cols
* @param compare (row, col1, col2 (> col1)) -> bool (= A(row, col1) <= A(row, col2))
* @return std::vector<int> res s.t. res[i] = argmin_j f(i,j)
*/
template <typename Compare, std::enable_if_t<std::is_invocable_r_v<bool, Compare, size_t, size_t, size_t>, std::nullptr_t> = nullptr>
std::vector<int> monotone_minima(size_t n, size_t m, const Compare &compare) {
std::vector<int> res(n);
auto rec = [&](auto rec, size_t u, size_t d, size_t l, size_t r) -> void {
if (u == d) return;
assert(l < r);
const size_t row = (u + d) >> 1;
size_t argmin = l;
for (size_t col = l + 1; col < r; ++col) if (not compare(row, argmin, col)) argmin = col;
res[row] = argmin;
rec(rec, u, row, l, argmin + 1);
rec(rec, row + 1, d, argmin, r);
};
rec(rec, 0, n, 0, m);
return res;
}
/**
* @param n # rows
* @param m # cols
* @param matrix (row, col) -> value
* @return std::vector<int> res s.t. res[i] = argmin_j f(i,j)
*/
template <typename Matrix, std::enable_if_t<std::is_invocable_v<Matrix, size_t, size_t>, std::nullptr_t> = nullptr>
std::vector<int> monotone_minima(size_t n, size_t m, const Matrix &matrix) {
return monotone_minima(n, m, [&matrix](size_t i, size_t j1, size_t j2) { return matrix(i, j1) <= matrix(i, j2); });
}
} // namespace suisen
#line 10 "library/convolution/min_plus_convolution.hpp"
namespace suisen {
template <typename T>
std::vector<T> min_plus_convolution_convex_convex(const std::vector<T> &a, const std::vector<T> &b) {
const int n = a.size(), m = b.size();
assert(n and m);
// check if convex
for (int i = 2; i < n; ++i) assert(a[i - 1] - a[i - 2] <= a[i] - a[i - 1]);
// check if convex
for (int j = 2; j < m; ++j) assert(b[j - 1] - b[j - 2] <= b[j] - b[j - 1]);
std::vector<T> c(n + m - 1);
c[0] = a[0] + b[0];
for (int k = 0, i = 0; k < n + m - 2; ++k) {
int j = k - i;
if (j == m - 1 or (i < n - 1 and a[i + 1] + b[j] < a[i] + b[j + 1])) {
c[k + 1] = a[++i] + b[j];
} else {
c[k + 1] = a[i] + b[++j];
}
}
return c;
}
template <typename T>
std::vector<T> min_plus_convolution_convex_arbitrary(const std::vector<T> &a, const std::vector<T> &b) {
const int n = a.size(), m = b.size();
assert(n and m);
// check if convex
for (int i = 2; i < n; ++i) assert(a[i - 1] - a[i - 2] <= a[i] - a[i - 1]);
std::vector<int> argmin = monotone_minima(
n + m - 1, m,
[&](int k, int j1, int j2) {
const int i1 = k - j1, i2 = k - j2;
// upper right triangle
if (i2 < 0) return true;
// lower left triangle
if (i1 >= n) return false;
return a[i1] + b[j1] < a[i2] + b[j2];
}
);
std::vector<T> c(n + m - 1);
for (int k = 0; k < n + m - 1; ++k) {
const int j = argmin[k], i = k - j;
c[k] = a[i] + b[j];
}
return c;
}
} // namespace suisen