This documentation is automatically generated by online-judge-tools/verification-helper
#include "library/convolution/relaxed_convolution.hpp"
オンライン畳み込み に詳しい.
#ifndef SUISEN_RELAXED_CONVOLUTION
#define SUISEN_RELAXED_CONVOLUTION
#include <vector>
namespace suisen {
// reference: https://qiita.com/Kiri8128/items/1738d5403764a0e26b4c
template <typename T>
struct RelaxedConvolution {
using value_type = T;
using polynomial_type = std::vector<value_type>;
using convolution_type = polynomial_type(*)(const polynomial_type&, const polynomial_type&);
RelaxedConvolution() = default;
RelaxedConvolution(const convolution_type &convolve) : _convolve(convolve), _n(0), _f{}, _g{}, _h{} {}
void set_convolve_function(const convolution_type &convolve) {
_convolve = convolve;
}
value_type append(const value_type &fi, const value_type &gi) {
++_n;
_f.push_back(fi), _g.push_back(gi);
for (int p = 1;; p <<= 1) {
int l1 = _n - p, r1 = _n, l2 = p - 1, r2 = l2 + p;
add(l1 + l2, range_convolve(l1, r1, l2, r2));
if (l1 == l2) break;
add(l1 + l2, range_convolve(l2, r2, l1, r1));
if (not (_n & p)) break;
}
return _h[_n - 1];
}
const value_type& operator[](int i) const {
return _h[i];
}
polynomial_type get() const {
return _h;
}
private:
convolution_type _convolve = [](const polynomial_type&, const polynomial_type&) -> polynomial_type { assert(false); };
int _n;
polynomial_type _f, _g, _h;
polynomial_type range_convolve(int l1, int r1, int l2, int r2) {
return _convolve(polynomial_type(_f.begin() + l1, _f.begin() + r1), polynomial_type(_g.begin() + l2, _g.begin() + r2));
}
void add(std::size_t bias, const polynomial_type &h) {
if (_h.size() < bias + h.size()) _h.resize(bias + h.size());
for (std::size_t i = 0; i < h.size(); ++i) _h[bias + i] += h[i];
}
};
} // namespace suisen
#endif // SUISEN_RELAXED_CONVOLUTION
#line 1 "library/convolution/relaxed_convolution.hpp"
#include <vector>
namespace suisen {
// reference: https://qiita.com/Kiri8128/items/1738d5403764a0e26b4c
template <typename T>
struct RelaxedConvolution {
using value_type = T;
using polynomial_type = std::vector<value_type>;
using convolution_type = polynomial_type(*)(const polynomial_type&, const polynomial_type&);
RelaxedConvolution() = default;
RelaxedConvolution(const convolution_type &convolve) : _convolve(convolve), _n(0), _f{}, _g{}, _h{} {}
void set_convolve_function(const convolution_type &convolve) {
_convolve = convolve;
}
value_type append(const value_type &fi, const value_type &gi) {
++_n;
_f.push_back(fi), _g.push_back(gi);
for (int p = 1;; p <<= 1) {
int l1 = _n - p, r1 = _n, l2 = p - 1, r2 = l2 + p;
add(l1 + l2, range_convolve(l1, r1, l2, r2));
if (l1 == l2) break;
add(l1 + l2, range_convolve(l2, r2, l1, r1));
if (not (_n & p)) break;
}
return _h[_n - 1];
}
const value_type& operator[](int i) const {
return _h[i];
}
polynomial_type get() const {
return _h;
}
private:
convolution_type _convolve = [](const polynomial_type&, const polynomial_type&) -> polynomial_type { assert(false); };
int _n;
polynomial_type _f, _g, _h;
polynomial_type range_convolve(int l1, int r1, int l2, int r2) {
return _convolve(polynomial_type(_f.begin() + l1, _f.begin() + r1), polynomial_type(_g.begin() + l2, _g.begin() + r2));
}
void add(std::size_t bias, const polynomial_type &h) {
if (_h.size() < bias + h.size()) _h.resize(bias + h.size());
for (std::size_t i = 0; i < h.size(); ++i) _h[bias + i] += h[i];
}
};
} // namespace suisen