This documentation is automatically generated by online-judge-tools/verification-helper
#include "library/convolution/relaxed_convolution_ntt.hpp"
#ifndef SUISEN_RELAXED_CONVOLUTION_NTT
#define SUISEN_RELAXED_CONVOLUTION_NTT
#include <atcoder/convolution>
namespace suisen {
// reference: https://qiita.com/Kiri8128/items/1738d5403764a0e26b4c
template <typename mint>
struct RelaxedConvolutionNTT {
RelaxedConvolutionNTT(): _n(0), _f{}, _g{}, _h{} {}
mint append(const mint& fi, const mint& gi) {
static constexpr int threshold_log = 6;
static constexpr int threshold = 1 << threshold_log;
static constexpr int threshold_mask = threshold - 1;
++_n;
_f.push_back(fi), _g.push_back(gi);
const int q = _n >> threshold_log, r = _n & threshold_mask;
if (r == 0) {
if (q == (-q & q)) {
std::vector<mint> f_fft = _f;
std::vector<mint> g_fft = _g;
f_fft.resize(2 * _n);
g_fft.resize(2 * _n);
atcoder::internal::butterfly(f_fft);
atcoder::internal::butterfly(g_fft);
std::vector<mint> h(2 * _n);
for (int i = 0; i < 2 * _n; ++i) {
h[i] = f_fft[i] * g_fft[i];
}
atcoder::internal::butterfly_inv(h);
ensure(2 * _n);
const mint z = mint(2 * _n).inv();
for (int i = _n - 1; i < 2 * _n; ++i) {
_h[i] += h[i] * z;
}
_f_fft.push_back(std::move(f_fft));
_g_fft.push_back(std::move(g_fft));
} else {
const int log_q = __builtin_ctz(q);
const int k = (-q & q) << threshold_log;
std::vector<mint> f_fft(_f.end() - k, _f.end());
std::vector<mint> g_fft(_g.end() - k, _g.end());
f_fft.resize(2 * k);
g_fft.resize(2 * k);
atcoder::internal::butterfly(f_fft);
atcoder::internal::butterfly(g_fft);
std::vector<mint> h(2 * k);
for (int i = 0; i < 2 * k; ++i) {
h[i] = _f_fft[log_q + 1][i] * g_fft[i] + f_fft[i] * _g_fft[log_q + 1][i];
}
atcoder::internal::butterfly_inv(h);
const mint z = mint(2 * k).inv();
for (int i = 0; i < k; ++i) {
_h[_n - 1 + i] += h[k - 1 + i] * z;
}
}
} else {
// naive convolve
ensure(_n);
for (int i = 0; i < r; ++i) {
_h[_n - 1] += _f[i] * _g[_n - 1 - i];
}
if (_n != r) {
for (int i = 0; i < r; ++i) {
_h[_n - 1] += _f[_n - i - 1] * _g[i];
}
}
}
return _h[_n - 1];
}
const mint& operator[](int i) const {
return _h[i];
}
std::vector<mint> get() const {
return _h;
}
private:
int _n;
std::vector<mint> _f, _g, _h;
std::vector<std::vector<mint>> _f_fft, _g_fft;
void ensure(std::size_t n) {
if (_h.size() < n) _h.resize(n);
}
};
} // namespace suisen
#endif // SUISEN_RELAXED_CONVOLUTION_NTT
#line 1 "library/convolution/relaxed_convolution_ntt.hpp"
#include <atcoder/convolution>
namespace suisen {
// reference: https://qiita.com/Kiri8128/items/1738d5403764a0e26b4c
template <typename mint>
struct RelaxedConvolutionNTT {
RelaxedConvolutionNTT(): _n(0), _f{}, _g{}, _h{} {}
mint append(const mint& fi, const mint& gi) {
static constexpr int threshold_log = 6;
static constexpr int threshold = 1 << threshold_log;
static constexpr int threshold_mask = threshold - 1;
++_n;
_f.push_back(fi), _g.push_back(gi);
const int q = _n >> threshold_log, r = _n & threshold_mask;
if (r == 0) {
if (q == (-q & q)) {
std::vector<mint> f_fft = _f;
std::vector<mint> g_fft = _g;
f_fft.resize(2 * _n);
g_fft.resize(2 * _n);
atcoder::internal::butterfly(f_fft);
atcoder::internal::butterfly(g_fft);
std::vector<mint> h(2 * _n);
for (int i = 0; i < 2 * _n; ++i) {
h[i] = f_fft[i] * g_fft[i];
}
atcoder::internal::butterfly_inv(h);
ensure(2 * _n);
const mint z = mint(2 * _n).inv();
for (int i = _n - 1; i < 2 * _n; ++i) {
_h[i] += h[i] * z;
}
_f_fft.push_back(std::move(f_fft));
_g_fft.push_back(std::move(g_fft));
} else {
const int log_q = __builtin_ctz(q);
const int k = (-q & q) << threshold_log;
std::vector<mint> f_fft(_f.end() - k, _f.end());
std::vector<mint> g_fft(_g.end() - k, _g.end());
f_fft.resize(2 * k);
g_fft.resize(2 * k);
atcoder::internal::butterfly(f_fft);
atcoder::internal::butterfly(g_fft);
std::vector<mint> h(2 * k);
for (int i = 0; i < 2 * k; ++i) {
h[i] = _f_fft[log_q + 1][i] * g_fft[i] + f_fft[i] * _g_fft[log_q + 1][i];
}
atcoder::internal::butterfly_inv(h);
const mint z = mint(2 * k).inv();
for (int i = 0; i < k; ++i) {
_h[_n - 1 + i] += h[k - 1 + i] * z;
}
}
} else {
// naive convolve
ensure(_n);
for (int i = 0; i < r; ++i) {
_h[_n - 1] += _f[i] * _g[_n - 1 - i];
}
if (_n != r) {
for (int i = 0; i < r; ++i) {
_h[_n - 1] += _f[_n - i - 1] * _g[i];
}
}
}
return _h[_n - 1];
}
const mint& operator[](int i) const {
return _h[i];
}
std::vector<mint> get() const {
return _h;
}
private:
int _n;
std::vector<mint> _f, _g, _h;
std::vector<std::vector<mint>> _f_fft, _g_fft;
void ensure(std::size_t n) {
if (_h.size() < n) _h.resize(n);
}
};
} // namespace suisen