This documentation is automatically generated by online-judge-tools/verification-helper
#include "library/datastructure/segment_tree/dual_segment_tree.hpp"
#ifndef SUISEN_DUAL_SEGTREE
#define SUISEN_DUAL_SEGTREE
#include "library/datastructure/segment_tree/commutative_dual_segment_tree.hpp"
namespace suisen {
template <typename T, typename F, T(*mapping)(F, T), F(*composition)(F, F), F(*id)()>
struct DualSegmentTree : public CommutativeDualSegmentTree<T, F, mapping, composition, id> {
using base_type = CommutativeDualSegmentTree<T, F, mapping, composition, id>;
using base_type::base_type;
void apply(int l, int r, const F& f) {
push(l, r);
base_type::apply(l, r, f);
}
private:
void push(int k) {
base_type::apply(2 * k, this->lazy[k]), base_type::apply(2 * k + 1, this->lazy[k]);
this->lazy[k] = id();
}
void push(int l, int r) {
const int log = __builtin_ctz(this->m);
l += this->m, r += this->m;
for (int i = log; i >= 1; i--) {
if (((l >> i) << i) != l) push(l >> i);
if (((r >> i) << i) != r) push((r - 1) >> i);
}
}
};
template <typename T, typename F, T(*mapping)(F, T), F(*composition)(F, F), F(*id)()>
DualSegmentTree(int, T)->DualSegmentTree<T, F, mapping, composition, id>;
template <typename T, typename F, T(*mapping)(F, T), F(*composition)(F, F), F(*id)()>
DualSegmentTree(std::vector<T>)->DualSegmentTree<T, F, mapping, composition, id>;
} // namespace suisen
#endif // SUISEN_DUAL_SEGTREE
#line 1 "library/datastructure/segment_tree/dual_segment_tree.hpp"
#line 1 "library/datastructure/segment_tree/commutative_dual_segment_tree.hpp"
#include <cassert>
#include <vector>
namespace suisen {
template <typename T, typename F, T(*mapping)(F, T), F(*composition)(F, F), F(*id)()>
struct CommutativeDualSegmentTree {
CommutativeDualSegmentTree() = default;
CommutativeDualSegmentTree(std::vector<T>&& a) : n(a.size()), m(ceil_pow2(a.size())), data(std::move(a)), lazy(m, id()) {}
CommutativeDualSegmentTree(const std::vector<T>& a) : CommutativeDualSegmentTree(std::vector<T>(a)) {}
CommutativeDualSegmentTree(int n, const T& fill_value) : CommutativeDualSegmentTree(std::vector<T>(n, fill_value)) {}
T operator[](int i) const {
assert(0 <= i and i < n);
T res = data[i];
for (i = (i + m) >> 1; i; i >>= 1) res = mapping(lazy[i], res);
return res;
}
T get(int i) const {
return (*this)[i];
}
void apply(int l, int r, const F& f) {
assert(0 <= l and r <= n);
for (l += m, r += m; l < r; l >>= 1, r >>= 1) {
if (l & 1) apply(l++, f);
if (r & 1) apply(--r, f);
}
}
protected:
int n, m;
std::vector<T> data;
std::vector<F> lazy;
void apply(int k, const F& f) {
if (k < m) {
lazy[k] = composition(f, lazy[k]);
} else if (k - m < n) {
data[k - m] = mapping(f, data[k - m]);
}
}
private:
static int ceil_pow2(int n) {
int m = 1;
while (m < n) m <<= 1;
return m;
}
};
} // namespace suisen
#line 5 "library/datastructure/segment_tree/dual_segment_tree.hpp"
namespace suisen {
template <typename T, typename F, T(*mapping)(F, T), F(*composition)(F, F), F(*id)()>
struct DualSegmentTree : public CommutativeDualSegmentTree<T, F, mapping, composition, id> {
using base_type = CommutativeDualSegmentTree<T, F, mapping, composition, id>;
using base_type::base_type;
void apply(int l, int r, const F& f) {
push(l, r);
base_type::apply(l, r, f);
}
private:
void push(int k) {
base_type::apply(2 * k, this->lazy[k]), base_type::apply(2 * k + 1, this->lazy[k]);
this->lazy[k] = id();
}
void push(int l, int r) {
const int log = __builtin_ctz(this->m);
l += this->m, r += this->m;
for (int i = log; i >= 1; i--) {
if (((l >> i) << i) != l) push(l >> i);
if (((r >> i) << i) != r) push((r - 1) >> i);
}
}
};
template <typename T, typename F, T(*mapping)(F, T), F(*composition)(F, F), F(*id)()>
DualSegmentTree(int, T)->DualSegmentTree<T, F, mapping, composition, id>;
template <typename T, typename F, T(*mapping)(F, T), F(*composition)(F, F), F(*id)()>
DualSegmentTree(std::vector<T>)->DualSegmentTree<T, F, mapping, composition, id>;
} // namespace suisen