cp-library-cpp

This documentation is automatically generated by online-judge-tools/verification-helper

View the Project on GitHub suisen-cp/cp-library-cpp

:heavy_check_mark: Characteristic Polynomial (特性多項式)
(library/linear_algebra/characteristic_polynomial.hpp)

Characteristic Polynomial (特性多項式)

$N\times N$ 行列 $A$ の特性多項式 $p_A(\lambda) := \det(\lambda E _ N - A)$ を $\Theta(N ^ 3)$ 時間で計算するアルゴリズムの実装です.

概要

特性多項式に関する重要な性質として,相似変換により不変 ということが挙げられる.

証明 $N\times N$ 行列 $A$ と正則な $N\times N$ 行列 $P$ を任意に取る.任意の $\lambda$ に対して $\det(\lambda E _ N - A) = \det(\lambda E_N - P ^ {-1} A P)$ を示せばよいが,これは次のようにして示される. $$\begin{aligned} \det(\lambda E _ N - A) &= \det(\lambda E_N - A) \det(E _ N) \\ &= \det(\lambda E_N - A) \det(P ^ {-1} P) \\ &= \det(P ^ {-1}) \det(\lambda E_N - A) \det(P) \\ &= \det(P ^ {-1} (\lambda E_N - A) P) \\ &= \det(\lambda E_N - P ^ {-1} A P) \\ \end{aligned}$$

そこで,$A$ に相似変換を施して特性多項式を求めやすい行列 $B$ を得,代わりに $B$ の特性多項式を計算することを考える.

ここでは,特性多項式を求めやすい行列として 上 Hessenberg 行列 を用いる.上 Hessenberg 行列とは,以下のような形をした行列をいう.

\[\begin{bmatrix} \alpha _ 0 & \ast & \ast & \ast & \ast \\ \beta _ 1 & \alpha _ 1 & \ast & \ast & \ast \\ 0 & \beta _ 2 & \alpha _ 2 & \ast & \ast \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & \beta _ {N - 1} & \alpha _ {N - 1} \end{bmatrix}\]

$H$ を上 Hessenberg 行列として,$H$ の特性多項式 $p _ H(\lambda)$ は以下に示すアルゴリズムにより $\Theta(N ^ 3)$ 時間で計算できる.

上 Hessenberg 行列 $H$ の特性多項式を計算するアルゴリズム

Reference : https://ipsen.math.ncsu.edu/ps/charpoly3.pdf

方針

$H ^ {(k)} := (H _ {i, j}) _ {0 \leq i, j \lt k}$ および $p _ H ^ {(k)} (\lambda) := p _ {H ^ {(k)} }(\lambda)$ と定義する.

多項式の列 $\{ p _ H ^ {(k)}\} _ {k = 0} ^ N$ に対して成り立つ漸化式を導出することで $k = 0, \ldots, N$ の順に $p _ H ^ {(k)} (\lambda)$ を計算する.$p _ H(\lambda) = p _ H ^ {(N)} (\lambda)$ が求めたい多項式である.

アルゴリズム

$N = 0$ の場合は自明なので,$N \gt 0$ を仮定する.

$H$ は以下のように表されるとする.

\[H = \begin{bmatrix} \alpha _ 0 & \ast & \ast & \ast & \ast \\ \beta _ 1 & \alpha _ 1 & \ast & \ast & \ast \\ 0 & \beta _ 2 & \alpha _ 2 & \ast & \ast \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & \beta _ {N - 1} & \alpha _ {N - 1} \end{bmatrix}\]

まず,明らかに $p _ H ^ {(0)} (\lambda) = 1, \; p _ H ^ {(1)} (\lambda) = \lambda - \alpha _ 0$ である.$k \geq 2$ に対して,$p _ H ^ {(k)}$ を $p _ H ^ {(0)}, \ldots, p _ H ^ {(k - 1)}$ から計算することを考える.

$N\times N$ 行列 $A$ に対して,行列式 $\det(A)$ は次で定義される.ここで,$\mathfrak{S} _ N$ は $N$ 次の置換全体の集合,$\mathrm{sgn}: \mathfrak{S} _ N \to \{ -1, +1 \}$ は引数の置換 $\sigma$ が偶置換なら $+1$,奇置換なら $-1$ を取る関数である.

\[\det (A) := \sum _ {\sigma \in \mathfrak{S} _ N} \mathrm{sgn}(\sigma)\prod _ {i = 0} ^ {N - 1} A _ {i, \sigma(i)}\]

$p _ H ^ {(k)} (\lambda) = \det (\lambda E _ k - H ^ {(k)})$ を上記の式を用いて計算する.$\sigma (i) = k - 1$ を満たす $i$ によって場合分けをする.

以上より,$k\geq 2$ に対して次が成立する.

\[p _ H ^ {(k)} = (\lambda - \alpha _ {k - 1}) p _ H ^ {(k - 1)} - \sum _ {l = 0} ^ {k - 2} \Bigl(H _ {l, k - 1} \prod _ {i = l + 1} ^ {k - 1} \beta _ i\Bigr) p _ H ^ {(l)}\]

右辺は $\Theta(N ^ 2)$ 時間で計算できるので,結局全ての $p _ H ^ {(k)}$ を $\Theta(N ^ 3)$ 時間で計算することが出来る.

上 Hessenberg 行列 $H$ の特性多項式を $\Theta(N ^ 3)$ で計算することができたので,あとは任意の $N \times N$ 行列 $A$ を相似変換により上 Hessenberg 行列へと変換することができればよいが,Hessenberg Reduction に示したように,これは $\Theta(N ^ 3)$ 時間で行うことが出来る.

Depends on

Verified with

Code

#ifndef SUISEN_CHARACTERISTIC_POLYNOMIAL
#define SUISEN_CHARACTERISTIC_POLYNOMIAL

#include "library/linear_algebra/hessenberg_reduction.hpp"

namespace suisen {
    /**
     * Reference: https://ipsen.math.ncsu.edu/ps/charpoly3.pdf
     * returns p(λ) = det(λE - A)
     */
    template <typename T>
    std::vector<T> characteristic_polynomial(const Matrix<T> &A) {
        A.assert_square();
        const int n = A.row_size();
        if (n == 0) return { T{1} };
        auto H = hessenberg_reduction(A);
        /**
         *     +-              -+
         *     | a0  *  *  *  * |
         *     | b1 a1  *  *  * |
         * H = |  0 b2 a2  *  * |
         *     |  0  0 b3 a3  * |
         *     |  0  0  0 b4 a4 |
         *     +-              -+
         * p_i(λ) := det(λ*E_i - H[:i][:i])
         * p_0(λ) = 1,
         * p_1(λ) = λ-a_0,
         * p_i(λ) = (λ-a_{i-1}) p_{i-1}(λ) - Σ[j=0,i-1] p_j(λ) * H_{j,i} * Π[k=j+1,i] b_k.
         */
        std::vector<std::vector<T>> p(n + 1);
        p[0] = { T{1} }, p[1] = { { -H[0][0], T{1} } };
        for (int i = 1; i < n; ++i) {
            p[i + 1].resize(i + 2, T{0});
            for (int k = 0; k < i + 1; ++k) {
                p[i + 1][k] -= H[i][i] * p[i][k];
                p[i + 1][k + 1] += p[i][k];
            }
            T prod_b = T{1};
            for (int j = i - 1; j >= 0; --j) {
                prod_b *= H[j + 1][j];
                T coef = H[j][i] * prod_b;
                for (int k = 0; k < j + 1; ++k) p[i + 1][k] -= coef * p[j][k];
            }
        }
        return p[n];
    }
} // namespace suisen


#endif // SUISEN_CHARACTERISTIC_POLYNOMIAL
#line 1 "library/linear_algebra/characteristic_polynomial.hpp"



#line 1 "library/linear_algebra/hessenberg_reduction.hpp"



#line 1 "library/linear_algebra/matrix.hpp"



#include <algorithm>
#include <cassert>
#include <optional>
#include <vector>

namespace suisen {
    template <typename T>
    struct Matrix {
        std::vector<std::vector<T>> dat;

        Matrix() = default;
        Matrix(int n) : Matrix(n, n) {}
        Matrix(int n, int m, T fill_value = T(0)) : dat(n, std::vector<T>(m, fill_value)) {}
        Matrix(const std::vector<std::vector<T>>& dat) : dat(dat) {}

        const std::vector<T>& operator[](int i) const { return dat[i]; }
        std::vector<T>& operator[](int i) { return dat[i]; }

        operator std::vector<std::vector<T>>() const { return dat; }

        friend bool operator==(const Matrix<T>& A, const Matrix<T>& B) { return A.dat == B.dat; }
        friend bool operator!=(const Matrix<T>& A, const Matrix<T>& B) { return A.dat != B.dat; }

        std::pair<int, int> shape() const { return dat.empty() ? std::make_pair<int, int>(0, 0) : std::make_pair<int, int>(dat.size(), dat[0].size()); }
        int row_size() const { return dat.size(); }
        int col_size() const { return dat.empty() ? 0 : dat[0].size(); }

        friend Matrix<T>& operator+=(Matrix<T>& A, const Matrix<T>& B) {
            assert(A.shape() == B.shape());
            auto [n, m] = A.shape();
            for (int i = 0; i < n; ++i) for (int j = 0; j < m; ++j) A.dat[i][j] += B.dat[i][j];
            return A;
        }
        friend Matrix<T>& operator-=(Matrix<T>& A, const Matrix<T>& B) {
            assert(A.shape() == B.shape());
            auto [n, m] = A.shape();
            for (int i = 0; i < n; ++i) for (int j = 0; j < m; ++j) A.dat[i][j] -= B.dat[i][j];
            return A;
        }
        friend Matrix<T>& operator*=(Matrix<T>& A, const Matrix<T>& B) { return A = A * B; }
        friend Matrix<T>& operator*=(Matrix<T>& A, const T& val) {
            for (auto& row : A.dat) for (auto& elm : row) elm *= val;
            return A;
        }
        friend Matrix<T>& operator/=(Matrix<T>& A, const T& val) { return A *= T(1) / val; }
        friend Matrix<T>& operator/=(Matrix<T>& A, const Matrix<T>& B) { return A *= B.inv(); }

        friend Matrix<T> operator+(Matrix<T> A, const Matrix<T>& B) { A += B; return A; }
        friend Matrix<T> operator-(Matrix<T> A, const Matrix<T>& B) { A -= B; return A; }
        friend Matrix<T> operator*(const Matrix<T>& A, const Matrix<T>& B) {
            assert(A.col_size() == B.row_size());
            const int n = A.row_size(), m = A.col_size(), l = B.col_size();

            if (std::min({ n, m, l }) <= 70) {
                // naive
                Matrix<T> C(n, l);
                for (int i = 0; i < n; ++i) for (int j = 0; j < m; ++j) for (int k = 0; k < l; ++k) {
                    C.dat[i][k] += A.dat[i][j] * B.dat[j][k];
                }
                return C;
            }

            // strassen
            const int nl = 0, nm = n >> 1, nr = nm + nm;
            const int ml = 0, mm = m >> 1, mr = mm + mm;
            const int ll = 0, lm = l >> 1, lr = lm + lm;

            auto A00 = A.submatrix(nl, nm, ml, mm), A01 = A.submatrix(nl, nm, mm, mr);
            auto A10 = A.submatrix(nm, nr, ml, mm), A11 = A.submatrix(nm, nr, mm, mr);

            auto B00 = B.submatrix(ml, mm, ll, lm), B01 = B.submatrix(ml, mm, lm, lr);
            auto B10 = B.submatrix(mm, mr, ll, lm), B11 = B.submatrix(mm, mr, lm, lr);

            auto P0 = (A00 + A11) * (B00 + B11);
            auto P1 = (A10 + A11) * B00;
            auto P2 = A00 * (B01 - B11);
            auto P3 = A11 * (B10 - B00);
            auto P4 = (A00 + A01) * B11;
            auto P5 = (A10 - A00) * (B00 + B01);
            auto P6 = (A01 - A11) * (B10 + B11);

            Matrix<T> C(n, l);

            C.assign_submatrix(nl, ll, P0 + P3 - P4 + P6), C.assign_submatrix(nl, lm, P2 + P4);
            C.assign_submatrix(nm, ll, P1 + P3), C.assign_submatrix(nm, lm, P0 + P2 - P1 + P5);

            // fractions
            if (l != lr) {
                for (int i = 0; i < nr; ++i) for (int j = 0; j < mr; ++j) C.dat[i][lr] += A.dat[i][j] * B.dat[j][lr];
            }
            if (m != mr) {
                for (int i = 0; i < nr; ++i) for (int k = 0; k < l; ++k) C.dat[i][k] += A.dat[i][mr] * B.dat[mr][k];
            }
            if (n != nr) {
                for (int j = 0; j < m; ++j) for (int k = 0; k < l; ++k) C.dat[nr][k] += A.dat[nr][j] * B.dat[j][k];
            }

            return C;
        }
        friend Matrix<T> operator*(const T& val, Matrix<T> A) { A *= val; return A; }
        friend Matrix<T> operator*(Matrix<T> A, const T& val) { A *= val; return A; }
        friend Matrix<T> operator/(const Matrix<T>& A, const Matrix<T>& B) { return A * B.inv(); }
        friend Matrix<T> operator/(Matrix<T> A, const T& val) { A /= val; return A; }
        friend Matrix<T> operator/(const T& val, const Matrix<T>& A) { return val * A.inv(); }

        friend std::vector<T> operator*(const Matrix<T>& A, const std::vector<T>& x) {
            const auto [n, m] = A.shape();
            assert(m == int(x.size()));
            std::vector<T> b(n, T(0));
            for (int i = 0; i < n; ++i) for (int j = 0; j < m; ++j) b[i] += A.dat[i][j] * x[j];
            return b;
        }

        static Matrix<T> e0(int n) { return Matrix<T>(n, Identity::ADD); }
        static Matrix<T> e1(int n) { return Matrix<T>(n, Identity::MUL); }

        Matrix<T> pow(long long b) const {
            assert_square();
            assert(b >= 0);
            Matrix<T> res = e1(row_size()), p = *this;
            for (; b; b >>= 1) {
                if (b & 1) res *= p;
                p *= p;
            }
            return res;
        }
        Matrix<T> inv() const { return *safe_inv(); }

        std::optional<Matrix<T>> safe_inv() const {
            assert_square();
            Matrix<T> A = *this;
            const int n = A.row_size();
            for (int i = 0; i < n; ++i) {
                A[i].resize(2 * n, T{ 0 });
                A[i][n + i] = T{ 1 };
            }
            for (int i = 0; i < n; ++i) {
                for (int k = i; k < n; ++k) if (A[k][i] != T{ 0 }) {
                    std::swap(A[i], A[k]);
                    T c = T{ 1 } / A[i][i];
                    for (int j = i; j < 2 * n; ++j) A[i][j] *= c;
                    break;
                }
                if (A[i][i] == T{ 0 }) return std::nullopt;
                for (int k = 0; k < n; ++k) if (k != i and A[k][i] != T{ 0 }) {
                    T c = A[k][i];
                    for (int j = i; j < 2 * n; ++j) A[k][j] -= c * A[i][j];
                }
            }
            for (auto& row : A.dat) row.erase(row.begin(), row.begin() + n);
            return A;
        }

        T det() const {
            assert_square();
            Matrix<T> A = *this;
            bool sgn = false;
            const int n = A.row_size();
            for (int j = 0; j < n; ++j) for (int i = j + 1; i < n; ++i) if (A[i][j] != T{ 0 }) {
                std::swap(A[j], A[i]);
                T q = A[i][j] / A[j][j];
                for (int k = j; k < n; ++k) A[i][k] -= A[j][k] * q;
                sgn = not sgn;
            }
            T res = sgn ? T{ -1 } : T{ +1 };
            for (int i = 0; i < n; ++i) res *= A[i][i];
            return res;
        }
        T det_arbitrary_mod() const {
            assert_square();
            Matrix<T> A = *this;
            bool sgn = false;
            const int n = A.row_size();
            for (int j = 0; j < n; ++j) for (int i = j + 1; i < n; ++i) {
                for (; A[i][j].val(); sgn = not sgn) {
                    std::swap(A[j], A[i]);
                    T q = A[i][j].val() / A[j][j].val();
                    for (int k = j; k < n; ++k) A[i][k] -= A[j][k] * q;
                }
            }
            T res = sgn ? -1 : +1;
            for (int i = 0; i < n; ++i) res *= A[i][i];
            return res;
        }
        void assert_square() const { assert(row_size() == col_size()); }

        Matrix<T> submatrix(int row_begin, int row_end, int col_begin, int col_end) const {
            Matrix<T> A(row_end - row_begin, col_end - col_begin);
            for (int i = row_begin; i < row_end; ++i) for (int j = col_begin; j < col_end; ++j) {
                A[i - row_begin][j - col_begin] = dat[i][j];
            }
            return A;
        }
        void assign_submatrix(int row_begin, int col_begin, const Matrix<T>& A) {
            const int n = A.row_size(), m = A.col_size();
            assert(row_begin + n <= row_size() and col_begin + m <= col_size());
            for (int i = 0; i < n; ++i) for (int j = 0; j < m; ++j) {
                dat[row_begin + i][col_begin + j] = A[i][j];
            }
        }
    private:
        enum class Identity {
            ADD, MUL
        };
        Matrix(int n, Identity ident) : Matrix<T>::Matrix(n) {
            if (ident == Identity::MUL) for (int i = 0; i < n; ++i) dat[i][i] = 1;
        }
    };
} // namespace suisen


#line 5 "library/linear_algebra/hessenberg_reduction.hpp"

namespace suisen {
    /**
     * Reference: http://www.phys.uri.edu/nigh/NumRec/bookfpdf/f11-5.pdf
     * returns H := P^(-1) A P, where H is hessenberg matrix
     */
    template <typename T>
    Matrix<T> hessenberg_reduction(Matrix<T> A) {
        A.assert_square();
        const int n = A.row_size();
        for (int r = 0; r < n - 2; ++r) {
            int pivot = -1;
            for (int r2 = r + 1; r2 < n; ++r2) if (A[r2][r] != 0) {
                pivot = r2;
                break;
            }
            if (pivot < 0) continue;
            if (pivot != r + 1) {
                for (int k = 0; k < n; ++k) std::swap(A[r + 1][k], A[pivot][k]);
                for (int k = 0; k < n; ++k) std::swap(A[k][r + 1], A[k][pivot]);
            }
            const T den = T{1} / A[r + 1][r];
            for (int r2 = r + 2; r2 < n; ++r2) if (T coef = A[r2][r] * den; coef != 0) {
                for (int k = r; k < n; ++k) A[r2][k] -= coef * A[r + 1][k];
                for (int k = 0; k < n; ++k) A[k][r + 1] += coef * A[k][r2];
            }
        }
        return A;
    }
} // namespace suisen



#line 5 "library/linear_algebra/characteristic_polynomial.hpp"

namespace suisen {
    /**
     * Reference: https://ipsen.math.ncsu.edu/ps/charpoly3.pdf
     * returns p(λ) = det(λE - A)
     */
    template <typename T>
    std::vector<T> characteristic_polynomial(const Matrix<T> &A) {
        A.assert_square();
        const int n = A.row_size();
        if (n == 0) return { T{1} };
        auto H = hessenberg_reduction(A);
        /**
         *     +-              -+
         *     | a0  *  *  *  * |
         *     | b1 a1  *  *  * |
         * H = |  0 b2 a2  *  * |
         *     |  0  0 b3 a3  * |
         *     |  0  0  0 b4 a4 |
         *     +-              -+
         * p_i(λ) := det(λ*E_i - H[:i][:i])
         * p_0(λ) = 1,
         * p_1(λ) = λ-a_0,
         * p_i(λ) = (λ-a_{i-1}) p_{i-1}(λ) - Σ[j=0,i-1] p_j(λ) * H_{j,i} * Π[k=j+1,i] b_k.
         */
        std::vector<std::vector<T>> p(n + 1);
        p[0] = { T{1} }, p[1] = { { -H[0][0], T{1} } };
        for (int i = 1; i < n; ++i) {
            p[i + 1].resize(i + 2, T{0});
            for (int k = 0; k < i + 1; ++k) {
                p[i + 1][k] -= H[i][i] * p[i][k];
                p[i + 1][k + 1] += p[i][k];
            }
            T prod_b = T{1};
            for (int j = i - 1; j >= 0; --j) {
                prod_b *= H[j + 1][j];
                T coef = H[j][i] * prod_b;
                for (int k = 0; k < j + 1; ++k) p[i + 1][k] -= coef * p[j][k];
            }
        }
        return p[n];
    }
} // namespace suisen
Back to top page