This documentation is automatically generated by online-judge-tools/verification-helper
#include "library/sequence/eulerian_number.hpp"
#ifndef SUISEN_EULERIAN_NUMBER
#define SUISEN_EULERIAN_NUMBER
#include "library/math/factorial.hpp"
#include "library/sequence/powers.hpp"
// reference: https://en.wikipedia.org/wiki/Eulerian_number
namespace suisen {
template <typename FPSType>
std::vector<typename FPSType::value_type> eulerian_number(uint32_t n) {
using mint = typename FPSType::value_type;
if (n == 0) return {};
factorial<mint> fac(n + 1);
const uint32_t h = (n + 1) >> 1;
FPSType f = powers<mint>(h, n);
f.erase(f.begin());
FPSType g(h);
for (uint32_t i = 0; i < h; ++i) {
mint v = fac.binom(n + 1, i);
g[i] = i & 1 ? -v : v;
}
FPSType res = f * g;
res.resize(n);
for (uint32_t i = h; i < n; ++i) res[i] = res[n - 1 - i];
return res;
}
template <typename mint>
std::vector<std::vector<mint>> eulerian_number_table(uint32_t n) {
if (n == 0) return {};
std::vector dp(n + 1, std::vector<mint>{});
for (uint32_t i = 1; i <= n; ++i) {
dp[i].resize(i);
dp[i][0] = dp[i][i - 1] = 1;
for (uint32_t j = 1; j < i - 1; ++j) dp[i][j] = (i - j) * dp[i - 1][j - 1] + (j + 1) * dp[i - 1][j];
}
return dp;
}
} // namespace suisen
#endif // SUISEN_EULERIAN_NUMBER
#line 1 "library/sequence/eulerian_number.hpp"
#line 1 "library/math/factorial.hpp"
#include <cassert>
#include <vector>
namespace suisen {
template <typename T, typename U = T>
struct factorial {
factorial() = default;
factorial(int n) { ensure(n); }
static void ensure(const int n) {
int sz = _fac.size();
if (n + 1 <= sz) return;
int new_size = std::max(n + 1, sz * 2);
_fac.resize(new_size), _fac_inv.resize(new_size);
for (int i = sz; i < new_size; ++i) _fac[i] = _fac[i - 1] * i;
_fac_inv[new_size - 1] = U(1) / _fac[new_size - 1];
for (int i = new_size - 1; i > sz; --i) _fac_inv[i - 1] = _fac_inv[i] * i;
}
T fac(const int i) {
ensure(i);
return _fac[i];
}
T operator()(int i) {
return fac(i);
}
U fac_inv(const int i) {
ensure(i);
return _fac_inv[i];
}
U binom(const int n, const int r) {
if (n < 0 or r < 0 or n < r) return 0;
ensure(n);
return _fac[n] * _fac_inv[r] * _fac_inv[n - r];
}
template <typename ...Ds, std::enable_if_t<std::conjunction_v<std::is_integral<Ds>...>, std::nullptr_t> = nullptr>
U polynom(const int n, const Ds& ...ds) {
if (n < 0) return 0;
ensure(n);
int sumd = 0;
U res = _fac[n];
for (int d : { ds... }) {
if (d < 0 or d > n) return 0;
sumd += d;
res *= _fac_inv[d];
}
if (sumd > n) return 0;
res *= _fac_inv[n - sumd];
return res;
}
U perm(const int n, const int r) {
if (n < 0 or r < 0 or n < r) return 0;
ensure(n);
return _fac[n] * _fac_inv[n - r];
}
private:
static std::vector<T> _fac;
static std::vector<U> _fac_inv;
};
template <typename T, typename U>
std::vector<T> factorial<T, U>::_fac{ 1 };
template <typename T, typename U>
std::vector<U> factorial<T, U>::_fac_inv{ 1 };
} // namespace suisen
#line 1 "library/sequence/powers.hpp"
#include <cstdint>
#line 1 "library/number/linear_sieve.hpp"
#line 5 "library/number/linear_sieve.hpp"
#include <numeric>
#line 7 "library/number/linear_sieve.hpp"
namespace suisen {
// referece: https://37zigen.com/linear-sieve/
class LinearSieve {
public:
LinearSieve(const int n) : _n(n), min_prime_factor(std::vector<int>(n + 1)) {
std::iota(min_prime_factor.begin(), min_prime_factor.end(), 0);
prime_list.reserve(_n / 20);
for (int d = 2; d <= _n; ++d) {
if (min_prime_factor[d] == d) prime_list.push_back(d);
const int prime_max = std::min(min_prime_factor[d], _n / d);
for (int prime : prime_list) {
if (prime > prime_max) break;
min_prime_factor[prime * d] = prime;
}
}
}
int prime_num() const noexcept { return prime_list.size(); }
/**
* Returns a vector of primes in [0, n].
* It is guaranteed that the returned vector is sorted in ascending order.
*/
const std::vector<int>& get_prime_list() const noexcept {
return prime_list;
}
const std::vector<int>& get_min_prime_factor() const noexcept { return min_prime_factor; }
/**
* Returns a vector of `{ prime, index }`.
* It is guaranteed that the returned vector is sorted in ascending order.
*/
std::vector<std::pair<int, int>> factorize(int n) const noexcept {
assert(0 < n and n <= _n);
std::vector<std::pair<int, int>> prime_powers;
while (n > 1) {
int p = min_prime_factor[n], c = 0;
do { n /= p, ++c; } while (n % p == 0);
prime_powers.emplace_back(p, c);
}
return prime_powers;
}
private:
const int _n;
std::vector<int> min_prime_factor;
std::vector<int> prime_list;
};
} // namespace suisen
#line 6 "library/sequence/powers.hpp"
namespace suisen {
// returns { 0^k, 1^k, ..., n^k }
template <typename mint>
std::vector<mint> powers(uint32_t n, uint64_t k) {
const auto mpf = LinearSieve(n).get_min_prime_factor();
std::vector<mint> res(n + 1);
res[0] = k == 0;
for (uint32_t i = 1; i <= n; ++i) res[i] = i == 1 ? 1 : uint32_t(mpf[i]) == i ? mint(i).pow(k) : res[mpf[i]] * res[i / mpf[i]];
return res;
}
} // namespace suisen
#line 6 "library/sequence/eulerian_number.hpp"
// reference: https://en.wikipedia.org/wiki/Eulerian_number
namespace suisen {
template <typename FPSType>
std::vector<typename FPSType::value_type> eulerian_number(uint32_t n) {
using mint = typename FPSType::value_type;
if (n == 0) return {};
factorial<mint> fac(n + 1);
const uint32_t h = (n + 1) >> 1;
FPSType f = powers<mint>(h, n);
f.erase(f.begin());
FPSType g(h);
for (uint32_t i = 0; i < h; ++i) {
mint v = fac.binom(n + 1, i);
g[i] = i & 1 ? -v : v;
}
FPSType res = f * g;
res.resize(n);
for (uint32_t i = h; i < n; ++i) res[i] = res[n - 1 - i];
return res;
}
template <typename mint>
std::vector<std::vector<mint>> eulerian_number_table(uint32_t n) {
if (n == 0) return {};
std::vector dp(n + 1, std::vector<mint>{});
for (uint32_t i = 1; i <= n; ++i) {
dp[i].resize(i);
dp[i][0] = dp[i][i - 1] = 1;
for (uint32_t j = 1; j < i - 1; ++j) dp[i][j] = (i - j) * dp[i - 1][j - 1] + (j + 1) * dp[i - 1][j];
}
return dp;
}
} // namespace suisen