This documentation is automatically generated by online-judge-tools/verification-helper
#include "library/sequence/sum_of_powers.hpp"
#ifndef SUISEN_SUM_POWERS
#define SUISEN_SUM_POWERS
#include "library/math/pow_mods.hpp"
#include "library/sequence/bernoulli_number.hpp"
namespace suisen {
// res[p] = 1^p + 2^p + ... + n^p for p=0, ..., max_exponent (O(k log k), where k=max_exponent)
template <typename FPSType>
auto sum_of_powers(int n, int max_exponent, const std::vector<typename FPSType::value_type> &bernoulli_table) {
const int k = max_exponent;
assert(bernoulli_table.size() >= size_t(k + 2));
using fps = FPSType;
using mint = typename FPSType::value_type;
factorial<mint> fac(k + 1);
pow_mods<mint> pow_n(n, k + 1);
fps f(k + 2);
for (int j = 0; j <= k + 1; ++j) {
f[j] = pow_n[j] * fac.fac_inv(j);
}
std::vector<mint> b(bernoulli_table.begin(), bernoulli_table.begin() + (k + 2));
b[1] *= -1; // b[1] = +1/2
for (int j = 0; j <= k + 1; ++j) {
b[j] *= fac.fac_inv(j);
}
f *= b;
std::vector<mint> res(k + 1);
for (int p = 0; p <= k; ++p) {
res[p] = fac.fac(p) * (f[p + 1] - b[p + 1]);
}
return res;
}
// res[p] = 1^p + 2^p + ... + n^p for p=0, ..., max_exponent (O(k log k), where k=max_exponent)
template <typename FPSType>
auto sum_of_powers(int n, int max_exponent) {
return sum_of_powers<FPSType>(n, max_exponent, bernoulli_number<FPSType>(max_exponent + 1));
}
} // namespace suisen
#endif // SUISEN_SUM_POWERS
#line 1 "library/sequence/sum_of_powers.hpp"
#line 1 "library/math/pow_mods.hpp"
#include <vector>
namespace suisen {
template <int base_as_int, typename mint>
struct static_pow_mods {
static_pow_mods() = default;
static_pow_mods(int n) { ensure(n); }
const mint& operator[](int i) const {
ensure(i);
return pows[i];
}
static void ensure(int n) {
int sz = pows.size();
if (sz > n) return;
pows.resize(n + 1);
for (int i = sz; i <= n; ++i) pows[i] = base * pows[i - 1];
}
private:
static inline std::vector<mint> pows { 1 };
static inline mint base = base_as_int;
static constexpr int mod = mint::mod();
};
template <typename mint>
struct pow_mods {
pow_mods() = default;
pow_mods(mint base, int n) : base(base) { ensure(n); }
const mint& operator[](int i) const {
ensure(i);
return pows[i];
}
void ensure(int n) const {
int sz = pows.size();
if (sz > n) return;
pows.resize(n + 1);
for (int i = sz; i <= n; ++i) pows[i] = base * pows[i - 1];
}
private:
mutable std::vector<mint> pows { 1 };
mint base;
static constexpr int mod = mint::mod();
};
}
#line 1 "library/sequence/bernoulli_number.hpp"
#line 1 "library/math/factorial.hpp"
#include <cassert>
#line 6 "library/math/factorial.hpp"
namespace suisen {
template <typename T, typename U = T>
struct factorial {
factorial() = default;
factorial(int n) { ensure(n); }
static void ensure(const int n) {
int sz = _fac.size();
if (n + 1 <= sz) return;
int new_size = std::max(n + 1, sz * 2);
_fac.resize(new_size), _fac_inv.resize(new_size);
for (int i = sz; i < new_size; ++i) _fac[i] = _fac[i - 1] * i;
_fac_inv[new_size - 1] = U(1) / _fac[new_size - 1];
for (int i = new_size - 1; i > sz; --i) _fac_inv[i - 1] = _fac_inv[i] * i;
}
T fac(const int i) {
ensure(i);
return _fac[i];
}
T operator()(int i) {
return fac(i);
}
U fac_inv(const int i) {
ensure(i);
return _fac_inv[i];
}
U binom(const int n, const int r) {
if (n < 0 or r < 0 or n < r) return 0;
ensure(n);
return _fac[n] * _fac_inv[r] * _fac_inv[n - r];
}
template <typename ...Ds, std::enable_if_t<std::conjunction_v<std::is_integral<Ds>...>, std::nullptr_t> = nullptr>
U polynom(const int n, const Ds& ...ds) {
if (n < 0) return 0;
ensure(n);
int sumd = 0;
U res = _fac[n];
for (int d : { ds... }) {
if (d < 0 or d > n) return 0;
sumd += d;
res *= _fac_inv[d];
}
if (sumd > n) return 0;
res *= _fac_inv[n - sumd];
return res;
}
U perm(const int n, const int r) {
if (n < 0 or r < 0 or n < r) return 0;
ensure(n);
return _fac[n] * _fac_inv[n - r];
}
private:
static std::vector<T> _fac;
static std::vector<U> _fac_inv;
};
template <typename T, typename U>
std::vector<T> factorial<T, U>::_fac{ 1 };
template <typename T, typename U>
std::vector<U> factorial<T, U>::_fac_inv{ 1 };
} // namespace suisen
#line 5 "library/sequence/bernoulli_number.hpp"
namespace suisen {
template <typename FPSType>
std::vector<typename FPSType::value_type> bernoulli_number(int n) {
using mint = typename FPSType::value_type;
factorial<mint> fac(n);
FPSType a(n + 1);
for (int i = 0; i <= n; ++i) a[i] = fac.fac_inv(i + 1);
a.inv_inplace(n + 1), a.resize(n + 1);
for (int i = 2; i <= n; ++i) a[i] *= fac(i);
return a;
}
} // namespace suisen
#line 6 "library/sequence/sum_of_powers.hpp"
namespace suisen {
// res[p] = 1^p + 2^p + ... + n^p for p=0, ..., max_exponent (O(k log k), where k=max_exponent)
template <typename FPSType>
auto sum_of_powers(int n, int max_exponent, const std::vector<typename FPSType::value_type> &bernoulli_table) {
const int k = max_exponent;
assert(bernoulli_table.size() >= size_t(k + 2));
using fps = FPSType;
using mint = typename FPSType::value_type;
factorial<mint> fac(k + 1);
pow_mods<mint> pow_n(n, k + 1);
fps f(k + 2);
for (int j = 0; j <= k + 1; ++j) {
f[j] = pow_n[j] * fac.fac_inv(j);
}
std::vector<mint> b(bernoulli_table.begin(), bernoulli_table.begin() + (k + 2));
b[1] *= -1; // b[1] = +1/2
for (int j = 0; j <= k + 1; ++j) {
b[j] *= fac.fac_inv(j);
}
f *= b;
std::vector<mint> res(k + 1);
for (int p = 0; p <= k; ++p) {
res[p] = fac.fac(p) * (f[p + 1] - b[p + 1]);
}
return res;
}
// res[p] = 1^p + 2^p + ... + n^p for p=0, ..., max_exponent (O(k log k), where k=max_exponent)
template <typename FPSType>
auto sum_of_powers(int n, int max_exponent) {
return sum_of_powers<FPSType>(n, max_exponent, bernoulli_number<FPSType>(max_exponent + 1));
}
} // namespace suisen