This documentation is automatically generated by online-judge-tools/verification-helper
#include "library/transform/walsh_hadamard.hpp"
シグネチャ
template <typename T, auto add = default_operator::add<T>, auto sub = default_operator::sub<T>>
void walsh_hadamard(std::vector<T>&)
template <typename T, auto add = default_operator::add<T>, auto sub = default_operator::sub<T>, auto div = default_operator::div<T>>
void walsh_hadamard_inv(std::vector<T>&) // std::is_integral_v<T> が true となる型
template <typename T, auto add = default_operator::add<T>, auto sub = default_operator::sub<T>, auto mul = default_operator::mul<T>, auto inv = default_operator::inv<T>>
void walsh_hadamard_inv(std::vector<T>&) // std::is_integral_v<T> が false となる型
概要
長さ $N=2^L$ の列 $(A_0=0,A_1,\ldots,A_{N-1})$ に アダマール変換 を施す関数 walsh_hadamard
およびその逆変換を施す関数 walsh_hadamard_inv
を提供します.各変換は inplace に行われ,引数として渡した列は書き換えられます.
テンプレート引数
T
: 列の要素の型.add
: 二項演算 (加算).デフォルトでは operator+
が呼ばれるようになっています.sub
: 二項演算 (減算).デフォルトでは operator-
が呼ばれるようになっています.mul
: 二項演算 (乗算).デフォルトでは operator*
が呼ばれるようになっています.div
: 二項演算 (除算).デフォルトでは operator/
が呼ばれるようになっています.inv
: 単項演算 (乗法逆元).デフォルトでは x
に対して T{1}/x
と計算されます.walsh_hadamard_inv
に関して,T
が int
や long long
などの型に対しては除算 div
が要求され,double
や atcoder::modint
などの型に対しては乗法逆元 inv
および乗算 mul
が要求されます (あとで設計を見直す可能性が高いです).
制約
時間計算量
$\Theta(N\log N)$
#ifndef SUISEN_WALSH_HADAMARD_TRANSFORM
#define SUISEN_WALSH_HADAMARD_TRANSFORM
#include "library/transform/kronecker_power.hpp"
namespace suisen::walsh_hadamard_transform {
namespace internal {
template <typename T, auto add = default_operator::add<T>, auto sub = default_operator::sub<T>>
void unit_transform(T& x0, T& x1) {
T y0 = x0, y1 = x1;
x0 = add(y0, y1); // 1, 1
x1 = sub(y0, y1); // 1, -1
}
} // namespace internal
using kronecker_power_transform::kronecker_power_transform;
template <typename T, auto add = default_operator::add<T>, auto sub = default_operator::sub<T>>
void walsh_hadamard(std::vector<T>& a) {
kronecker_power_transform<T, 2, internal::unit_transform<T, add, sub>>(a);
}
template <typename T, auto add = default_operator::add<T>, auto sub = default_operator::sub<T>, auto div = default_operator::div<T>, std::enable_if_t<std::is_integral_v<T>, std::nullptr_t> = nullptr>
void walsh_hadamard_inv(std::vector<T>& a) {
walsh_hadamard<T, add, sub>(a);
const T n{ a.size() };
for (auto& val : a) val = div(val, n);
}
template <typename T, auto add = default_operator::add<T>, auto sub = default_operator::sub<T>, auto mul = default_operator::mul<T>, auto inv = default_operator::inv<T>, std::enable_if_t<std::negation_v<std::is_integral<T>>, std::nullptr_t> = nullptr>
void walsh_hadamard_inv(std::vector<T>& a) {
walsh_hadamard<T, add, sub>(a);
const T n{ a.size() };
const T inv_n = inv(n);
for (auto& val : a) val = mul(val, inv_n);
}
} // namespace suisen::walsh_hadamard_transform
#endif // SUISEN_WALSH_HADAMARD_TRANSFORM
#line 1 "library/transform/walsh_hadamard.hpp"
#line 1 "library/transform/kronecker_power.hpp"
#include <cassert>
#include <utility>
#include <vector>
#line 1 "library/util/default_operator.hpp"
namespace suisen {
namespace default_operator {
template <typename T>
auto zero() -> decltype(T { 0 }) { return T { 0 }; }
template <typename T>
auto one() -> decltype(T { 1 }) { return T { 1 }; }
template <typename T>
auto add(const T &x, const T &y) -> decltype(x + y) { return x + y; }
template <typename T>
auto sub(const T &x, const T &y) -> decltype(x - y) { return x - y; }
template <typename T>
auto mul(const T &x, const T &y) -> decltype(x * y) { return x * y; }
template <typename T>
auto div(const T &x, const T &y) -> decltype(x / y) { return x / y; }
template <typename T>
auto mod(const T &x, const T &y) -> decltype(x % y) { return x % y; }
template <typename T>
auto neg(const T &x) -> decltype(-x) { return -x; }
template <typename T>
auto inv(const T &x) -> decltype(one<T>() / x) { return one<T>() / x; }
} // default_operator
namespace default_operator_noref {
template <typename T>
auto zero() -> decltype(T { 0 }) { return T { 0 }; }
template <typename T>
auto one() -> decltype(T { 1 }) { return T { 1 }; }
template <typename T>
auto add(T x, T y) -> decltype(x + y) { return x + y; }
template <typename T>
auto sub(T x, T y) -> decltype(x - y) { return x - y; }
template <typename T>
auto mul(T x, T y) -> decltype(x * y) { return x * y; }
template <typename T>
auto div(T x, T y) -> decltype(x / y) { return x / y; }
template <typename T>
auto mod(T x, T y) -> decltype(x % y) { return x % y; }
template <typename T>
auto neg(T x) -> decltype(-x) { return -x; }
template <typename T>
auto inv(T x) -> decltype(one<T>() / x) { return one<T>() / x; }
} // default_operator
} // namespace suisen
#line 9 "library/transform/kronecker_power.hpp"
namespace suisen {
namespace kronecker_power_transform {
namespace internal {
template <typename UnitTransform, typename ReferenceGetter, std::size_t... Seq>
void unit_transform(UnitTransform transform, ReferenceGetter ref_getter, std::index_sequence<Seq...>) {
transform(ref_getter(Seq)...);
}
}
template <typename T, std::size_t D, auto unit_transform>
void kronecker_power_transform(std::vector<T> &x) {
const std::size_t n = x.size();
for (std::size_t block = 1; block < n; block *= D) {
for (std::size_t l = 0; l < n; l += D * block) {
for (std::size_t offset = l; offset < l + block; ++offset) {
const auto ref_getter = [&](std::size_t i) -> T& { return x[offset + i * block]; };
internal::unit_transform(unit_transform, ref_getter, std::make_index_sequence<D>());
}
}
}
}
template <typename T, typename UnitTransform>
void kronecker_power_transform(std::vector<T> &x, const std::size_t D, UnitTransform unit_transform) {
const std::size_t n = x.size();
std::vector<T> work(D);
for (std::size_t block = 1; block < n; block *= D) {
for (std::size_t l = 0; l < n; l += D * block) {
for (std::size_t offset = l; offset < l + block; ++offset) {
for (std::size_t i = 0; i < D; ++i) work[i] = x[offset + i * block];
unit_transform(work);
for (std::size_t i = 0; i < D; ++i) x[offset + i * block] = work[i];
}
}
}
}
template <typename T, auto e = default_operator::zero<T>, auto add = default_operator::add<T>, auto mul = default_operator::mul<T>>
auto kronecker_power_transform(std::vector<T> &x, const std::vector<std::vector<T>> &A) -> decltype(e(), add(std::declval<T>(), std::declval<T>()), mul(std::declval<T>(), std::declval<T>()), void()) {
const std::size_t D = A.size();
assert(D == A[0].size());
auto unit_transform = [&](std::vector<T> &x) {
std::vector<T> y(D, e());
for (std::size_t i = 0; i < D; ++i) for (std::size_t j = 0; j < D; ++j) {
y[i] = add(y[i], mul(A[i][j], x[j]));
}
x.swap(y);
};
kronecker_power_transform<T>(x, D, unit_transform);
}
}
} // namespace suisen
#line 5 "library/transform/walsh_hadamard.hpp"
namespace suisen::walsh_hadamard_transform {
namespace internal {
template <typename T, auto add = default_operator::add<T>, auto sub = default_operator::sub<T>>
void unit_transform(T& x0, T& x1) {
T y0 = x0, y1 = x1;
x0 = add(y0, y1); // 1, 1
x1 = sub(y0, y1); // 1, -1
}
} // namespace internal
using kronecker_power_transform::kronecker_power_transform;
template <typename T, auto add = default_operator::add<T>, auto sub = default_operator::sub<T>>
void walsh_hadamard(std::vector<T>& a) {
kronecker_power_transform<T, 2, internal::unit_transform<T, add, sub>>(a);
}
template <typename T, auto add = default_operator::add<T>, auto sub = default_operator::sub<T>, auto div = default_operator::div<T>, std::enable_if_t<std::is_integral_v<T>, std::nullptr_t> = nullptr>
void walsh_hadamard_inv(std::vector<T>& a) {
walsh_hadamard<T, add, sub>(a);
const T n{ a.size() };
for (auto& val : a) val = div(val, n);
}
template <typename T, auto add = default_operator::add<T>, auto sub = default_operator::sub<T>, auto mul = default_operator::mul<T>, auto inv = default_operator::inv<T>, std::enable_if_t<std::negation_v<std::is_integral<T>>, std::nullptr_t> = nullptr>
void walsh_hadamard_inv(std::vector<T>& a) {
walsh_hadamard<T, add, sub>(a);
const T n{ a.size() };
const T inv_n = inv(n);
for (auto& val : a) val = mul(val, inv_n);
}
} // namespace suisen::walsh_hadamard_transform