cp-library-cpp

This documentation is automatically generated by online-judge-tools/verification-helper

View the Project on GitHub suisen-cp/cp-library-cpp

:heavy_check_mark: test/src/datastructure/segment_tree/segment_tree_beats/abc256_Ex.test.cpp

Depends on

Code

#define PROBLEM "https://atcoder.jp/contests/abc256/tasks/abc256_Ex"

#include <iostream>

#include "library/datastructure/segment_tree/segment_tree_beats.hpp"

constexpr int inf = 200000;

struct S {
    long long sum;
    int len;
    bool same;
    bool fail = false;

    S() : S(0, 0, true) {}
    S(int v, int len = 1) : S((long long) v * len, len, true) {}
    S(long long sum, int len, bool same) : sum(sum), len(len), same(same) {}
};

S op(S x, S y) {
    if (x.len == 0) return y;
    if (y.len == 0) return x;
    return S { x.sum + y.sum, x.len + y.len, x.same and y.same and x.sum / x.len == y.sum / y.len };
}
S e() {
    return S{};
}
S mapping(int f, S x) {
    if (x.len == 0 or f == -1) return x;
    if (f >= 0) return S { f, x.len };
    if (x.same) return S { int((x.sum / x.len) / -f), x.len };
    x.fail = true;
    return x;
}
int composition(int f, int g) {
    if (f >= 0) return f;
    if (g >= 0) return g / -f;
    return -((long long) f * g <= inf ? f * g : inf);
}
int id() {
    return -1;
}

int main() {
    std::ios::sync_with_stdio(false);
    std::cin.tie(nullptr);

    int n, q;
    std::cin >> n >> q;
    
    std::vector<S> init(n);
    for (int i = 0; i < n; ++i) {
        int v;
        std::cin >> v;
        init[i] = v; 
    }

    suisen::SegmentTreeBeats<S, op, e, int, mapping, composition, id> seg(init);

    while (q --> 0) {
        int query_type, l, r;
        std::cin >> query_type >> l >> r;
        --l;
        if (query_type == 1) {
            int x;
            std::cin >> x;
            seg.apply(l, r, -x);
        } else if (query_type == 2) {
            int y;
            std::cin >> y;
            seg.apply(l, r, y);
        } else if (query_type == 3) {
            std::cout << seg.prod(l, r).sum << '\n';
        } else {
            assert(false);
        }
    }

    return 0;
}
#line 1 "test/src/datastructure/segment_tree/segment_tree_beats/abc256_Ex.test.cpp"
#define PROBLEM "https://atcoder.jp/contests/abc256/tasks/abc256_Ex"

#include <iostream>

#line 1 "library/datastructure/segment_tree/segment_tree_beats.hpp"



#line 1 "library/datastructure/segment_tree/lazy_segment_tree.hpp"



#include <cassert>
#include <vector>
#line 1 "library/util/update_proxy_object.hpp"



#line 1 "library/type_traits/type_traits.hpp"



#include <limits>
#line 6 "library/type_traits/type_traits.hpp"
#include <type_traits>

namespace suisen {
    template <typename ...Constraints> using constraints_t = std::enable_if_t<std::conjunction_v<Constraints...>, std::nullptr_t>;

    template <typename T, typename = std::nullptr_t> struct bitnum { static constexpr int value = 0; };
    template <typename T> struct bitnum<T, constraints_t<std::is_integral<T>>> { static constexpr int value = std::numeric_limits<std::make_unsigned_t<T>>::digits; };
    template <typename T> static constexpr int bitnum_v = bitnum<T>::value;
    template <typename T, size_t n> struct is_nbit { static constexpr bool value = bitnum_v<T> == n; };
    template <typename T, size_t n> static constexpr bool is_nbit_v = is_nbit<T, n>::value;

    template <typename T, typename = std::nullptr_t> struct safely_multipliable { using type = T; };
    template <typename T> struct safely_multipliable<T, constraints_t<std::is_signed<T>, is_nbit<T, 32>>> { using type = long long; };
    template <typename T> struct safely_multipliable<T, constraints_t<std::is_signed<T>, is_nbit<T, 64>>> { using type = __int128_t; };
    template <typename T> struct safely_multipliable<T, constraints_t<std::is_unsigned<T>, is_nbit<T, 32>>> { using type = unsigned long long; };
    template <typename T> struct safely_multipliable<T, constraints_t<std::is_unsigned<T>, is_nbit<T, 64>>> { using type = __uint128_t; };
    template <typename T> using safely_multipliable_t = typename safely_multipliable<T>::type;

    template <typename T, typename = void> struct rec_value_type { using type = T; };
    template <typename T> struct rec_value_type<T, std::void_t<typename T::value_type>> {
        using type = typename rec_value_type<typename T::value_type>::type;
    };
    template <typename T> using rec_value_type_t = typename rec_value_type<T>::type;

    template <typename T> class is_iterable {
        template <typename T_> static auto test(T_ e) -> decltype(e.begin(), e.end(), std::true_type{});
        static std::false_type test(...);
    public:
        static constexpr bool value = decltype(test(std::declval<T>()))::value;
    };
    template <typename T> static constexpr bool is_iterable_v = is_iterable<T>::value;
    template <typename T> class is_writable {
        template <typename T_> static auto test(T_ e) -> decltype(std::declval<std::ostream&>() << e, std::true_type{});
        static std::false_type test(...);
    public:
        static constexpr bool value = decltype(test(std::declval<T>()))::value;
    };
    template <typename T> static constexpr bool is_writable_v = is_writable<T>::value;
    template <typename T> class is_readable {
        template <typename T_> static auto test(T_ e) -> decltype(std::declval<std::istream&>() >> e, std::true_type{});
        static std::false_type test(...);
    public:
        static constexpr bool value = decltype(test(std::declval<T>()))::value;
    };
    template <typename T> static constexpr bool is_readable_v = is_readable<T>::value;
} // namespace suisen

#line 5 "library/util/update_proxy_object.hpp"

namespace suisen {

template <typename T, typename UpdateFunc, constraints_t<std::is_invocable<UpdateFunc>> = nullptr>
struct UpdateProxyObject {
    public:
        UpdateProxyObject(T &v, UpdateFunc update) : v(v), update(update) {}
        operator T() const { return v; }
        auto& operator++() && { ++v, update(); return *this; }
        auto& operator--() && { --v, update(); return *this; }
        auto& operator+=(const T &val) && { v += val, update(); return *this; }
        auto& operator-=(const T &val) && { v -= val, update(); return *this; }
        auto& operator*=(const T &val) && { v *= val, update(); return *this; }
        auto& operator/=(const T &val) && { v /= val, update(); return *this; }
        auto& operator%=(const T &val) && { v %= val, update(); return *this; }
        auto& operator =(const T &val) && { v  = val, update(); return *this; }
        auto& operator<<=(const T &val) && { v <<= val, update(); return *this; }
        auto& operator>>=(const T &val) && { v >>= val, update(); return *this; }
        template <typename F, constraints_t<std::is_invocable_r<T, F, T>> = nullptr>
        auto& apply(F f) && { v = f(v), update(); return *this; }
    private:
        T &v;
        UpdateFunc update;
};

} // namespace suisen


#line 7 "library/datastructure/segment_tree/lazy_segment_tree.hpp"

namespace suisen {
    template <typename T, T(*op)(T, T), T(*e)(), typename F, T(*mapping)(F, T), F(*composition)(F, F), F(*id)(), bool enable_beats = false>
    struct LazySegmentTree {
        using value_type = T;
        using operator_type = F;

        LazySegmentTree() : LazySegmentTree(0) {}
        LazySegmentTree(int n) : LazySegmentTree(std::vector<value_type>(n, e())) {}
        LazySegmentTree(const std::vector<value_type>& init) : n(init.size()), m(ceil_pow2(n)), lg(__builtin_ctz(m)), data(2 * m, e()), lazy(m, id()) {
            std::copy(init.begin(), init.end(), data.begin() + m);
            for (int k = m - 1; k > 0; --k) update(k);
        }

        void apply(int l, int r, const operator_type& f) {
            assert(0 <= l and l <= r and r <= n);
            push_to(l, r);
            for (int l2 = l + m, r2 = r + m; l2 < r2; l2 >>= 1, r2 >>= 1) {
                if (l2 & 1) all_apply(l2++, f);
                if (r2 & 1) all_apply(--r2, f);
            }
            update_from(l, r);
        }
        void apply(int p, const operator_type& f) {
            (*this)[p] = mapping(f, get(p));
        }

        value_type operator()(int l, int r) {
            assert(0 <= l and l <= r and r <= n);
            push_to(l, r);
            value_type res_l = e(), res_r = e();
            for (l += m, r += m; l < r; l >>= 1, r >>= 1) {
                if (l & 1) res_l = op(res_l, data[l++]);
                if (r & 1) res_r = op(data[--r], res_r);
            }
            return op(res_l, res_r);
        }

        value_type prod(int l, int r) { return (*this)(l, r); }
        value_type prefix_prod(int r) { return (*this)(0, r); }
        value_type suffix_prod(int l) { return (*this)(l, m); }
        value_type all_prod() const { return data[1]; }

        auto operator[](int p) {
            assert(0 <= p and p < n);
            push_to(p);
            return UpdateProxyObject{ data[p + m], [this, p] { update_from(p); } };
        }
        value_type get(int p) { return (*this)[p]; }
        void set(int p, value_type v) { (*this)[p] = v; }

        template <typename Pred, constraints_t<std::is_invocable_r<bool, Pred, value_type>> = nullptr>
        int max_right(int l, Pred g) {
            assert(0 <= l && l <= n);
            assert(g(e()));
            if (l == n) return n;
            l += m;
            for (int i = lg; i >= 1; --i) push(l >> i);
            value_type sum = e();
            do {
                while ((l & 1) == 0) l >>= 1;
                if (not g(op(sum, data[l]))) {
                    while (l < m) {
                        push(l);
                        l = 2 * l;
                        if (g(op(sum, data[l]))) sum = op(sum, data[l++]);
                    }
                    return l - m;
                }
                sum = op(sum, data[l++]);
            } while ((l & -l) != l);
            return n;
        }
        template <bool(*f)(value_type)>
        int max_right(int l) { return max_right(l, f); }

        template <typename Pred, constraints_t<std::is_invocable_r<bool, Pred, value_type>> = nullptr>
        int min_left(int r, Pred g) {
            assert(0 <= r && r <= n);
            assert(g(e()));
            if (r == 0) return 0;
            r += m;
            for (int i = lg; i >= 1; --i) push(r >> i);
            value_type sum = e();
            do {
                r--;
                while (r > 1 and (r & 1)) r >>= 1;
                if (not g(op(data[r], sum))) {
                    while (r < m) {
                        push(r);
                        r = 2 * r + 1;
                        if (g(op(data[r], sum))) sum = op(data[r--], sum);
                    }
                    return r + 1 - m;
                }
                sum = op(data[r], sum);
            } while ((r & -r) != r);
            return 0;
        }
        template <bool(*f)(value_type)>
        int min_left(int l) { return min_left(l, f); }
    private:
        int n, m, lg;
        std::vector<value_type> data;
        std::vector<operator_type> lazy;

        static constexpr int ceil_pow2(int n) {
            int m = 1;
            while (m < n) m <<= 1;
            return m;
        }

        void all_apply(int k, const operator_type& f) {
            data[k] = mapping(f, data[k]);
            if (k < m) {
                lazy[k] = composition(f, lazy[k]);
                if constexpr (enable_beats) if (data[k].fail) push(k), update(k);
            }
        }
        void push(int k) {
            all_apply(2 * k, lazy[k]), all_apply(2 * k + 1, lazy[k]);
            lazy[k] = id();
        }
        void push_to(int p) {
            p += m;
            for (int i = lg; i >= 1; --i) push(p >> i);
        }
        void push_to(int l, int r) {
            l += m, r += m;
            int li = __builtin_ctz(l), ri = __builtin_ctz(r);
            for (int i = lg; i >= li + 1; --i) push(l >> i);
            for (int i = lg; i >= ri + 1; --i) push(r >> i);
        }
        void update(int k) {
            data[k] = op(data[2 * k], data[2 * k + 1]);
        }
        void update_from(int p) {
            p += m;
            for (int i = 1; i <= lg; ++i) update(p >> i);
        }
        void update_from(int l, int r) {
            l += m, r += m;
            int li = __builtin_ctz(l), ri = __builtin_ctz(r);
            for (int i = li + 1; i <= lg; ++i) update(l >> i);
            for (int i = ri + 1; i <= lg; ++i) update(r >> i);
        }
    };
}


#line 5 "library/datastructure/segment_tree/segment_tree_beats.hpp"

namespace suisen {
    template <typename T, T(*op)(T, T), T(*e)(), typename F, T(*mapping)(F, T), F(*composition)(F, F), F(*id)()>
    using SegmentTreeBeats = LazySegmentTree<T, op, e, F, mapping, composition, id, /* enable_beats = */ true>;
} // namespace suisen


#line 6 "test/src/datastructure/segment_tree/segment_tree_beats/abc256_Ex.test.cpp"

constexpr int inf = 200000;

struct S {
    long long sum;
    int len;
    bool same;
    bool fail = false;

    S() : S(0, 0, true) {}
    S(int v, int len = 1) : S((long long) v * len, len, true) {}
    S(long long sum, int len, bool same) : sum(sum), len(len), same(same) {}
};

S op(S x, S y) {
    if (x.len == 0) return y;
    if (y.len == 0) return x;
    return S { x.sum + y.sum, x.len + y.len, x.same and y.same and x.sum / x.len == y.sum / y.len };
}
S e() {
    return S{};
}
S mapping(int f, S x) {
    if (x.len == 0 or f == -1) return x;
    if (f >= 0) return S { f, x.len };
    if (x.same) return S { int((x.sum / x.len) / -f), x.len };
    x.fail = true;
    return x;
}
int composition(int f, int g) {
    if (f >= 0) return f;
    if (g >= 0) return g / -f;
    return -((long long) f * g <= inf ? f * g : inf);
}
int id() {
    return -1;
}

int main() {
    std::ios::sync_with_stdio(false);
    std::cin.tie(nullptr);

    int n, q;
    std::cin >> n >> q;
    
    std::vector<S> init(n);
    for (int i = 0; i < n; ++i) {
        int v;
        std::cin >> v;
        init[i] = v; 
    }

    suisen::SegmentTreeBeats<S, op, e, int, mapping, composition, id> seg(init);

    while (q --> 0) {
        int query_type, l, r;
        std::cin >> query_type >> l >> r;
        --l;
        if (query_type == 1) {
            int x;
            std::cin >> x;
            seg.apply(l, r, -x);
        } else if (query_type == 2) {
            int y;
            std::cin >> y;
            seg.apply(l, r, y);
        } else if (query_type == 3) {
            std::cout << seg.prod(l, r).sum << '\n';
        } else {
            assert(false);
        }
    }

    return 0;
}
Back to top page