This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://onlinejudge.u-aizu.ac.jp/problems/DSL_4_A"
#include <iostream>
#include <tuple>
#include "library/util/coordinate_compressor.hpp"
#include "library/datastructure/util/range_set.hpp"
using suisen::CoordinateCompressorBuilder;
using suisen::RangeSet;
constexpr int L = 31;
int main() {
std::ios::sync_with_stdio(false);
std::cin.tie(nullptr);
int n;
std::cin >> n;
CoordinateCompressorBuilder<long long> builder;
std::vector<std::tuple<long long, long long, long long, long long>> rectangles(n);
for (int i = 0; i < n; ++i) {
int xl, yl, xr, yr;
std::cin >> xl >> yl >> xr >> yr;
rectangles[i] = { xl, yl, xr, yr };
builder.push(yl);
builder.push(yr);
}
auto comp_y = builder.build();
int m = comp_y.size();
std::vector<RangeSet<long long>> sets(m);
for (const auto &[xl, yl, xr, yr] : rectangles) {
int cyl = comp_y[yl], cyr = comp_y[yr];
for (int i = cyl; i < cyr; ++i) {
sets[i].insert(xl, xr - 1);
}
}
long long ans = 0;
for (int i = 0; i < m - 1; ++i) {
long long hight = comp_y.decomp(i + 1) -comp_y.decomp(i);
ans += hight * sets[i].size();
}
std::cout << ans << std::endl;
return 0;
}
#line 1 "test/src/datastructure/util/range_set/DSL_4_A.test.cpp"
#define PROBLEM "https://onlinejudge.u-aizu.ac.jp/problems/DSL_4_A"
#include <iostream>
#include <tuple>
#line 1 "library/util/coordinate_compressor.hpp"
#include <algorithm>
#include <cassert>
#include <vector>
#line 1 "library/type_traits/type_traits.hpp"
#include <limits>
#line 6 "library/type_traits/type_traits.hpp"
#include <type_traits>
namespace suisen {
template <typename ...Constraints> using constraints_t = std::enable_if_t<std::conjunction_v<Constraints...>, std::nullptr_t>;
template <typename T, typename = std::nullptr_t> struct bitnum { static constexpr int value = 0; };
template <typename T> struct bitnum<T, constraints_t<std::is_integral<T>>> { static constexpr int value = std::numeric_limits<std::make_unsigned_t<T>>::digits; };
template <typename T> static constexpr int bitnum_v = bitnum<T>::value;
template <typename T, size_t n> struct is_nbit { static constexpr bool value = bitnum_v<T> == n; };
template <typename T, size_t n> static constexpr bool is_nbit_v = is_nbit<T, n>::value;
template <typename T, typename = std::nullptr_t> struct safely_multipliable { using type = T; };
template <typename T> struct safely_multipliable<T, constraints_t<std::is_signed<T>, is_nbit<T, 32>>> { using type = long long; };
template <typename T> struct safely_multipliable<T, constraints_t<std::is_signed<T>, is_nbit<T, 64>>> { using type = __int128_t; };
template <typename T> struct safely_multipliable<T, constraints_t<std::is_unsigned<T>, is_nbit<T, 32>>> { using type = unsigned long long; };
template <typename T> struct safely_multipliable<T, constraints_t<std::is_unsigned<T>, is_nbit<T, 64>>> { using type = __uint128_t; };
template <typename T> using safely_multipliable_t = typename safely_multipliable<T>::type;
template <typename T, typename = void> struct rec_value_type { using type = T; };
template <typename T> struct rec_value_type<T, std::void_t<typename T::value_type>> {
using type = typename rec_value_type<typename T::value_type>::type;
};
template <typename T> using rec_value_type_t = typename rec_value_type<T>::type;
template <typename T> class is_iterable {
template <typename T_> static auto test(T_ e) -> decltype(e.begin(), e.end(), std::true_type{});
static std::false_type test(...);
public:
static constexpr bool value = decltype(test(std::declval<T>()))::value;
};
template <typename T> static constexpr bool is_iterable_v = is_iterable<T>::value;
template <typename T> class is_writable {
template <typename T_> static auto test(T_ e) -> decltype(std::declval<std::ostream&>() << e, std::true_type{});
static std::false_type test(...);
public:
static constexpr bool value = decltype(test(std::declval<T>()))::value;
};
template <typename T> static constexpr bool is_writable_v = is_writable<T>::value;
template <typename T> class is_readable {
template <typename T_> static auto test(T_ e) -> decltype(std::declval<std::istream&>() >> e, std::true_type{});
static std::false_type test(...);
public:
static constexpr bool value = decltype(test(std::declval<T>()))::value;
};
template <typename T> static constexpr bool is_readable_v = is_readable<T>::value;
} // namespace suisen
#line 9 "library/util/coordinate_compressor.hpp"
namespace suisen {
template <typename T>
class CoordinateCompressorBuilder {
public:
struct Compressor {
public:
static constexpr int absent = -1;
// default constructor
Compressor() : _xs(std::vector<T>{}) {}
// Construct from strictly sorted vector
Compressor(const std::vector<T> &xs) : _xs(xs) {
assert(is_strictly_sorted(xs));
}
// Return the number of distinct keys.
int size() const {
return _xs.size();
}
// Check if the element is registered.
bool has_key(const T &e) const {
return std::binary_search(_xs.begin(), _xs.end(), e);
}
// Compress the element. if not registered, returns `default_value`. (default: Compressor::absent)
int comp(const T &e, int default_value = absent) const {
const int res = min_geq_index(e);
return res != size() and _xs[res] == e ? res : default_value;
}
// Restore the element from the index.
T decomp(const int compressed_index) const {
return _xs[compressed_index];
}
// Compress the element. Equivalent to call `comp(e)`
int operator[](const T &e) const {
return comp(e);
}
// Return the minimum registered value greater than `e`. if not exists, return `default_value`.
T min_gt(const T &e, const T &default_value) const {
auto it = std::upper_bound(_xs.begin(), _xs.end(), e);
return it == _xs.end() ? default_value : *it;
}
// Return the minimum registered value greater than or equal to `e`. if not exists, return `default_value`.
T min_geq(const T &e, const T &default_value) const {
auto it = std::lower_bound(_xs.begin(), _xs.end(), e);
return it == _xs.end() ? default_value : *it;
}
// Return the maximum registered value less than `e`. if not exists, return `default_value`
T max_lt(const T &e, const T &default_value) const {
auto it = std::upper_bound(_xs.rbegin(), _xs.rend(), e, std::greater<T>());
return it == _xs.rend() ? default_value : *it;
}
// Return the maximum registered value less than or equal to `e`. if not exists, return `default_value`
T max_leq(const T &e, const T &default_value) const {
auto it = std::lower_bound(_xs.rbegin(), _xs.rend(), e, std::greater<T>());
return it == _xs.rend() ? default_value : *it;
}
// Return the compressed index of the minimum registered value greater than `e`. if not exists, return `compressor.size()`.
int min_gt_index(const T &e) const {
return std::upper_bound(_xs.begin(), _xs.end(), e) - _xs.begin();
}
// Return the compressed index of the minimum registered value greater than or equal to `e`. if not exists, return `compressor.size()`.
int min_geq_index(const T &e) const {
return std::lower_bound(_xs.begin(), _xs.end(), e) - _xs.begin();
}
// Return the compressed index of the maximum registered value less than `e`. if not exists, return -1.
int max_lt_index(const T &e) const {
return int(_xs.rend() - std::upper_bound(_xs.rbegin(), _xs.rend(), e, std::greater<T>())) - 1;
}
// Return the compressed index of the maximum registered value less than or equal to `e`. if not exists, return -1.
int max_leq_index(const T &e) const {
return int(_xs.rend() - std::lower_bound(_xs.rbegin(), _xs.rend(), e, std::greater<T>())) - 1;
}
private:
std::vector<T> _xs;
static bool is_strictly_sorted(const std::vector<T> &v) {
return std::adjacent_find(v.begin(), v.end(), std::greater_equal<T>()) == v.end();
}
};
CoordinateCompressorBuilder() : _xs(std::vector<T>{}) {}
explicit CoordinateCompressorBuilder(const std::vector<T> &xs) : _xs(xs) {}
explicit CoordinateCompressorBuilder(std::vector<T> &&xs) : _xs(std::move(xs)) {}
template <typename Gen, constraints_t<std::is_invocable_r<T, Gen, int>> = nullptr>
CoordinateCompressorBuilder(const int n, Gen generator) {
reserve(n);
for (int i = 0; i < n; ++i) push(generator(i));
}
// Attempt to preallocate enough memory for specified number of elements.
void reserve(int n) {
_xs.reserve(n);
}
// Add data.
void push(const T &first) {
_xs.push_back(first);
}
// Add data.
void push(T &&first) {
_xs.push_back(std::move(first));
}
// Add data in the range of [first, last).
template <typename Iterator>
auto push(const Iterator &first, const Iterator &last) -> decltype(std::vector<T>{}.push_back(*first), void()) {
for (auto it = first; it != last; ++it) _xs.push_back(*it);
}
// Add all data in the container. Equivalent to `push(iterable.begin(), iterable.end())`.
template <typename Iterable>
auto push(const Iterable &iterable) -> decltype(std::vector<T>{}.push_back(*iterable.begin()), void()) {
push(iterable.begin(), iterable.end());
}
// Add data.
template <typename ...Args>
void emplace(Args &&...args) {
_xs.emplace_back(std::forward<Args>(args)...);
}
// Build compressor.
auto build() {
std::sort(_xs.begin(), _xs.end()), _xs.erase(std::unique(_xs.begin(), _xs.end()), _xs.end());
return Compressor {_xs};
}
// Build compressor from vector.
static auto build(const std::vector<T> &xs) {
return CoordinateCompressorBuilder(xs).build();
}
// Build compressor from vector.
static auto build(std::vector<T> &&xs) {
return CoordinateCompressorBuilder(std::move(xs)).build();
}
// Build compressor from generator.
template <typename Gen, constraints_t<std::is_invocable_r<T, Gen, int>> = nullptr>
static auto build(const int n, Gen generator) {
return CoordinateCompressorBuilder<T>(n, generator).build();
}
private:
std::vector<T> _xs;
};
} // namespace suisen
#line 1 "library/datastructure/util/range_set.hpp"
#include <map>
namespace suisen {
template <typename T, bool merge_adjacent_segment = true>
struct RangeSet : public std::map<T, T> {
public:
RangeSet() : _size(0) {}
// returns the number of intergers in this set (not the number of ranges). O(1)
T size() const { return number_of_elements(); }
// returns the number of intergers in this set (not the number of ranges). O(1)
T number_of_elements() const { return _size; }
// returns the number of ranges in this set (not the number of integers). O(1)
int number_of_ranges() const { return std::map<T, T>::size(); }
// returns whether the given integer is in this set or not. O(log N)
bool contains(T x) const {
auto it = this->upper_bound(x);
return it != this->begin() and x <= std::prev(it)->second;
}
/**
* returns the iterator pointing to the range [l, r] in this set s.t. l <= x <= r.
* if such a range does not exist, returns `end()`.
* O(log N)
*/
auto find_range(T x) const {
auto it = this->upper_bound(x);
return it != this->begin() and x <= (--it)->second ? it : this->end();
}
// returns whether `x` and `y` is in this set and in the same range. O(log N)
bool in_the_same_range(T x, T y) const {
auto it = get_containing_range(x);
return it != this->end() and it->first <= y and y <= it->second;
}
// inserts the range [x, x] and returns the number of integers inserted to this set. O(log N)
T insert(T x) {
return insert(x, x);
}
// inserts the range [l, r] and returns the number of integers inserted to this set. amortized O(log N)
T insert(T l, T r) {
if (l > r) return 0;
auto it = this->upper_bound(l);
if (it != this->begin() and is_mergeable(std::prev(it)->second, l)) {
it = std::prev(it);
l = std::min(l, it->first);
}
T inserted = 0;
for (; it != this->end() and is_mergeable(r, it->first); it = std::map<T, T>::erase(it)) {
auto [cl, cr] = *it;
r = std::max(r, cr);
inserted -= cr - cl + 1;
}
inserted += r - l + 1;
(*this)[l] = r;
_size += inserted;
return inserted;
}
// erases the range [x, x] and returns the number of intergers erased from this set. O(log N)
T erase(T x) {
return erase(x, x);
}
// erases the range [l, r] and returns the number of intergers erased from this set. amortized O(log N)
T erase(T l, T r) {
if (l > r) return 0;
T tl = l, tr = r;
auto it = this->upper_bound(l);
if (it != this->begin() and l <= std::prev(it)->second) {
it = std::prev(it);
tl = it->first;
}
T erased = 0;
for (; it != this->end() and it->first <= r; it = std::map<T, T>::erase(it)) {
auto [cl, cr] = *it;
tr = cr;
erased += cr - cl + 1;
}
if (tl < l) {
(*this)[tl] = l - 1;
erased -= l - tl;
}
if (r < tr) {
(*this)[r + 1] = tr;
erased -= tr - r;
}
_size -= erased;
return erased;
}
// returns minimum integer x s.t. x >= lower and x is NOT in this set
T minimum_excluded(T lower = 0) const {
static_assert(merge_adjacent_segment);
auto it = find_range(lower);
return it == this->end() ? lower : it->second + 1;
}
// returns maximum integer x s.t. x <= upper and x is NOT in this set
T maximum_excluded(T upper) const {
static_assert(merge_adjacent_segment);
auto it = find_range(upper);
return it == this->end() ? upper : it->first - 1;
}
private:
T _size;
bool is_mergeable(T cur_r, T next_l) {
return next_l <= cur_r + merge_adjacent_segment;
}
};
} // namespace suisen
#line 8 "test/src/datastructure/util/range_set/DSL_4_A.test.cpp"
using suisen::CoordinateCompressorBuilder;
using suisen::RangeSet;
constexpr int L = 31;
int main() {
std::ios::sync_with_stdio(false);
std::cin.tie(nullptr);
int n;
std::cin >> n;
CoordinateCompressorBuilder<long long> builder;
std::vector<std::tuple<long long, long long, long long, long long>> rectangles(n);
for (int i = 0; i < n; ++i) {
int xl, yl, xr, yr;
std::cin >> xl >> yl >> xr >> yr;
rectangles[i] = { xl, yl, xr, yr };
builder.push(yl);
builder.push(yr);
}
auto comp_y = builder.build();
int m = comp_y.size();
std::vector<RangeSet<long long>> sets(m);
for (const auto &[xl, yl, xr, yr] : rectangles) {
int cyl = comp_y[yl], cyr = comp_y[yr];
for (int i = cyl; i < cyr; ++i) {
sets[i].insert(xl, xr - 1);
}
}
long long ans = 0;
for (int i = 0; i < m - 1; ++i) {
long long hight = comp_y.decomp(i + 1) -comp_y.decomp(i);
ans += hight * sets[i].size();
}
std::cout << ans << std::endl;
return 0;
}