This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub suisen-cp/cp-library-cpp
#define PROBLEM "https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_7_H" #define ERROR 0.00001 #include <cassert> #include <iostream> #include <iomanip> #include "library/geom/geometry.hpp" using namespace suisen::geometry; int main() { std::ios::sync_with_stdio(false); std::cin.tie(nullptr); std::cout << std::fixed << std::setprecision(20); int n; coordinate_t r; std::cin >> n >> r; Polygon poly(n); for (auto &p : poly) std::cin >> p; std::cout << intersection_area(poly, Circle(ZERO, r)) << '\n'; return 0; }
#line 1 "test/src/geom/geometry/CGL_7_H.test.cpp" #define PROBLEM "https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_7_H" #define ERROR 0.00001 #include <cassert> #include <iostream> #include <iomanip> #line 1 "library/geom/geometry.hpp" #include <algorithm> #line 6 "library/geom/geometry.hpp" #include <complex> #line 8 "library/geom/geometry.hpp" #include <optional> #include <tuple> #include <variant> #include <vector> namespace suisen { namespace geometry { using coordinate_t = long double; using Point = std::complex<coordinate_t>; coordinate_t getx(const Point& p) { return p.real(); } coordinate_t gety(const Point& p) { return p.imag(); } // operator Point operator+(const Point &p, coordinate_t real) { return Point(p) + Point(real, 0); } Point operator-(const Point &p, coordinate_t real) { return Point(p) - Point(real, 0); } Point operator*(const Point &p, coordinate_t real) { return Point(p) * Point(real, 0); } Point operator/(const Point &p, coordinate_t real) { return Point(p) / Point(real, 0); } Point operator+(coordinate_t real, const Point &p) { return Point(real, 0) + Point(p); } Point operator-(coordinate_t real, const Point &p) { return Point(real, 0) - Point(p); } Point operator*(coordinate_t real, const Point &p) { return Point(real, 0) * Point(p); } Point operator/(coordinate_t real, const Point &p) { return Point(real, 0) / Point(p); } std::istream& operator>>(std::istream &in, Point &p) { coordinate_t x, y; in >> x >> y; p = Point(x, y); return in; } std::ostream& operator<<(std::ostream &out, const Point &p) { return out << getx(p) << ' ' << gety(p); } } namespace geometry { // relations between three points X, Y, Z. struct ISP { static constexpr int L_CURVE = +1; // +---------------+ Z is in 'a' => ISP = +1 static constexpr int R_CURVE = -1; // |aaaaaaaaaaaaaaa| Z is in 'b' => ISP = -1 static constexpr int FRONT = +2; // |ddd X eee Y ccc| Z is in 'c' => ISP = +2 static constexpr int BACK = -2; // |bbbbbbbbbbbbbbb| Z is in 'd' => ISP = -2 static constexpr int MIDDLE = 0; // +---------------+ Z is in 'e' => ISP = 0 }; struct Sign { static constexpr int NEGATIVE = -1; static constexpr int ZERO = 0; static constexpr int POSITIVE = +1; }; enum class Containment { OUT, ON, IN }; constexpr Point ZERO = Point(0, 0); constexpr Point ONE = Point(1, 0); constexpr Point I = Point(0, 1); constexpr coordinate_t EPS = 1e-9; constexpr coordinate_t PI = 3.14159265358979323846264338327950288419716939937510L; constexpr coordinate_t E = 2.71828182845904523536028747135266249775724709369995L; constexpr auto XY_COMPARATOR = [](const Point &p, const Point &q) { return getx(p) == getx(q) ? gety(p) < gety(q) : getx(p) < getx(q); }; constexpr auto XY_COMPARATOR_GREATER = [](const Point &p, const Point &q) { return getx(p) == getx(q) ? gety(p) > gety(q) : getx(p) > getx(q); }; constexpr auto YX_COMPARATOR = [](const Point &p, const Point &q) { return gety(p) == gety(q) ? getx(p) < getx(q) : gety(p) < gety(q); }; constexpr auto YX_COMPARATOR_GREATER = [](const Point &p, const Point &q) { return gety(p) == gety(q) ? getx(p) > getx(q) : gety(p) > gety(q); }; int sgn(coordinate_t x) { return x > EPS ? Sign::POSITIVE : x < -EPS ? Sign::NEGATIVE : Sign::ZERO; } int compare(coordinate_t x, coordinate_t y) { return sgn(x - y); } auto cartesian(const coordinate_t real, const coordinate_t imag) { return Point(real, imag); } auto polar(const coordinate_t rho, const coordinate_t theta) { return Point(rho * std::cos(theta), rho * std::sin(theta)); } auto cis(const coordinate_t theta) { return Point(std::cos(theta), std::sin(theta)); } auto conj(const Point &z) { return Point(getx(z), -gety(z)); } auto arg(const Point &z) { return std::atan2(gety(z), getx(z)); } auto square_abs(const Point &z) { return getx(z) * getx(z) + gety(z) * gety(z); } auto abs(const Point &z) { return std::sqrt(square_abs(z)); } auto rot(const Point &z, const coordinate_t theta) { return cis(theta) * z; } auto dot(const Point &a, const Point &b) { return getx(a) * getx(b) + gety(a) * gety(b); } auto det(const Point &a, const Point &b) { return getx(a) * gety(b) - gety(a) * getx(b); } bool equals(const Point &a, const Point &b) { return sgn(getx(a) - getx(b)) == Sign::ZERO and sgn(gety(a) - gety(b)) == Sign::ZERO; } bool equals(coordinate_t a, coordinate_t b) { return compare(a, b) == 0; } // https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_1_C int isp(const Point &a, const Point &b, const Point &c) { Point ab = b - a, ac = c - a; int s = sgn(det(ab, ac)); if (s == Sign::POSITIVE) return ISP::L_CURVE; if (s == Sign::NEGATIVE) return ISP::R_CURVE; if (sgn(dot(ab, ac)) == Sign::NEGATIVE) return ISP::BACK; Point ba = a - b, bc = c - b; if (sgn(dot(ba, bc)) == Sign::NEGATIVE) return ISP::FRONT; return ISP::MIDDLE; } struct Line { Point a, b; Line() : Line(ZERO, ZERO) {} Line(const Point &from, const Point &to) : a(from), b(to) {} // coef_x * x + coef_y * y + cnst = 0 Line(coordinate_t coef_x, coordinate_t coef_y, coordinate_t cnst) { if (not equals(coef_x, 0.)) { a = { (coef_y - cnst) / coef_x, -1. }; b = { (-coef_y - cnst) / coef_x, +1. }; } else { a = { -1., (coef_x - cnst) / coef_y }; b = { +1., (-coef_x - cnst) / coef_y }; } } template <size_t I> const std::tuple_element_t<I, Line>& get() const { static_assert(I < std::tuple_size_v<Line>); if constexpr (I == 0) return a; else if constexpr (I == 1) return b; } template <size_t I> std::tuple_element_t<I, Line>& get() { static_assert(I < std::tuple_size_v<Line>); if constexpr (I == 0) return a; else if constexpr (I == 1) return b; } }; struct Ray { Point a, b; Ray() : Ray(ZERO, ZERO) {} Ray(const Point &from, const Point &to) : a(from), b(to) {} template <size_t I> const std::tuple_element_t<I, Ray>& get() const { static_assert(I < std::tuple_size_v<Ray>); if constexpr (I == 0) return a; else if constexpr (I == 1) return b; } template <size_t I> std::tuple_element_t<I, Ray>& get() { static_assert(I < std::tuple_size_v<Ray>); if constexpr (I == 0) return a; else if constexpr (I == 1) return b; } }; struct Segment { Point a, b; Segment() : Segment(ZERO, ZERO) {} Segment(const Point &from, const Point &to) : a(from), b(to) {} template <size_t I> const std::tuple_element_t<I, Segment>& get() const { static_assert(I < std::tuple_size_v<Segment>); if constexpr (I == 0) return a; else if constexpr (I == 1) return b; } template <size_t I> std::tuple_element_t<I, Segment>& get() { static_assert(I < std::tuple_size_v<Segment>); if constexpr (I == 0) return a; else if constexpr (I == 1) return b; } }; struct Circle { Point center; coordinate_t radius; Circle() : Circle(ZERO, 0) {} Circle(const Point &c, const coordinate_t &r) : center(c), radius(r) {} }; // Triangle coordinate_t signed_area(const Point &a, const Point &b, const Point &c) { return det(b - a, c - a) / 2; } coordinate_t area(const Point &a, const Point &b, const Point &c) { return std::abs(signed_area(a, b, c)); } Point pG(const Point &a, const Point &b, const Point &c) { return (a + b + c) / 3; } // https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_7_B Circle pI(const Point &a, const Point &b, const Point &c) { coordinate_t la = abs(b - c), lb = abs(c - a), lc = abs(a - b); coordinate_t l = la + lb + lc; la /= l, lb /= l, lc /= l; Point center = la * a + lb * b + lc * c; coordinate_t radius = 2 * area(a, b, c) / l; return Circle(center, radius); } // https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_7_C Circle pO(const Point &a, const Point &b, const Point &c) { Point ab = b - a, bc = c - b, ca = a - c; coordinate_t la = square_abs(bc), lb = square_abs(ca), lc = square_abs(ab); coordinate_t s = la * (lb + lc - la), t = lb * (lc + la - lb), u = lc * (la + lb - lc); coordinate_t l = s + t + u; s /= l, t /= l, u /= l; Point center = a * s + b * t + c * u; return Circle(center, abs(center - a)); } Point pH(const Point &a, const Point &b, const Point &c) { return a + b + c - 2 * pO(a, b, c).center; } auto pIabc(const Point &a, const Point &b, const Point &c) { return std::make_tuple(pI(-a, b, c), pI(a, -b, c), pI(a, b, -c)); } // Line // https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_2_A template <typename line_t_1, typename line_t_2> auto is_parallel(const line_t_1 &l1, const line_t_2 &l2) -> decltype(l1.a, l1.b, l2.a, l2.b, bool()) { return sgn(det(l1.b - l1.a, l2.b - l2.a)) == Sign::ZERO; } // https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_2_A template <typename line_t_1, typename line_t_2> auto is_orthogonal(const line_t_1 &l1, const line_t_2 &l2) -> decltype(l1.a, l1.b, l2.a, l2.b, bool()) { return sgn(dot(l1.b - l1.a, l2.b - l2.a)) == Sign::ZERO; } template <typename line_t_1, typename line_t_2> auto on_the_same_line(const line_t_1 &l1, const line_t_2 &l2) -> decltype(l1.a, l1.b, l2.a, l2.b, bool()) { return is_parallel(l1, l2) and sgn(det(l1.b - l1.a, l2.a - l1.a)) == Sign::ZERO; } // https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_1_A template <typename line_t> Point projection(const Point &p, const line_t &line) { Point a = p - line.a; Point b = line.b - line.a; return line.a + dot(a, b) / square_abs(b) * b; } // https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_1_B template <typename line_t> Point reflection(const Point &p, const line_t &line) { Point h = projection(p, line); return p + (h - p) * 2; } // https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_2_D coordinate_t square_distance(const Point &p, const Segment &l) { Point h = projection(p, l); if (isp(l.a, l.b, h) == ISP::MIDDLE) { return square_abs(h - p); } else { return std::min(square_abs(p - l.a), square_abs(p - l.b)); } } coordinate_t square_distance(const Segment &l, const Point &p) { return square_distance(p, l); } coordinate_t square_distance(const Point &p, const Ray &l) { Point h = projection(p, l); int dir = isp(l.a, l.b, h); return dir == ISP::MIDDLE or dir == ISP::FRONT ? square_abs(h - p) : std::min(square_abs(p - l.a), square_abs(p - l.b)); } coordinate_t square_distance(const Ray &l, const Point &p) { return square_distance(p, l); } coordinate_t square_distance(const Point &p, const Line &l) { return square_abs(projection(p, l) - p); } coordinate_t square_distance(const Line &l, const Point &p) { return square_distance(p, l); } // https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_2_D coordinate_t distance(const Point &p, const Segment &l) { return std::sqrt(square_distance(p, l)); } // https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_2_D coordinate_t distance(const Segment &l, const Point &p) { return distance(p, l); } coordinate_t distance(const Point &p, const Ray &l) { return std::sqrt(square_distance(p, l)); } coordinate_t distance(const Ray &l, const Point &p) { return distance(p, l); } coordinate_t distance(const Point &p, const Line &l) { return std::sqrt(square_distance(p, l)); } coordinate_t distance(const Line &l, const Point &p) { return distance(p, l); } Containment contains(const Segment &l, const Point &p) { return sgn(distance(l, p)) == 0 ? Containment::ON : Containment::OUT; } Containment contains(const Ray &l, const Point &p) { return sgn(distance(l, p)) == 0 ? Containment::ON : Containment::OUT; } Containment contains(const Line &l, const Point &p) { return sgn(distance(l, p)) == 0 ? Containment::ON : Containment::OUT; } bool equals(const Line &l, const Line &m) { return on_the_same_line(l, m); } bool equals(const Ray &l, const Ray &m) { return on_the_same_line(l, m) and equals(l.a, m.a); } bool equals(const Segment &l, const Segment &m) { return (equals(l.a, m.a) and equals(l.b, m.b)) or (equals(l.a, m.b) and equals(l.b, m.a)); } // "https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_2_B" bool has_common_point(const Segment &l1, const Segment &l2) { int isp_1a = isp(l1.a, l1.b, l2.a), isp_1b = isp(l1.a, l1.b, l2.b); if (isp_1a * isp_1b > 0) return false; int isp_2a = isp(l2.a, l2.b, l1.a), isp_2b = isp(l2.a, l2.b, l1.b); if (isp_2a * isp_2b > 0) return false; return true; } namespace internal { template <typename line_t_1, typename line_t_2> Point cross_point(const line_t_1 &l1, const line_t_2 &l2) { assert(not is_parallel(l1, l2)); Point u = l1.b - l1.a, v = l2.a - l2.b, c = l2.a - l1.a; return l2.a - det(u, c) / det(u, v) * v; } } // "https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_2_C" std::variant<std::nullptr_t, Point, Segment> common_point(const Segment &l1, const Segment &l2) { if (not has_common_point(l1, l2)) return nullptr; if (not is_parallel(l1, l2)) return internal::cross_point(l1, l2); std::vector<Point> ps { l1.a, l1.b, l2.a, l2.b }; for (int i = 0; i <= 2; ++i) for (int j = 2; j >= i; --j) { if (XY_COMPARATOR(ps[j + 1], ps[j])) std::swap(ps[j], ps[j + 1]); } if (equals(ps[1], ps[2])) return ps[1]; return Segment(ps[1], ps[2]); } // https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_2_D coordinate_t square_distance(const Segment &l1, const Segment &l2) { if (has_common_point(l1, l2)) return 0; return std::min({ square_distance(l1, l2.a), square_distance(l1, l2.b), square_distance(l1.a, l2), square_distance(l1.b, l2) }); } // https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_2_D coordinate_t distance(const Segment &l1, const Segment &l2) { return std::sqrt(square_distance(l1, l2)); } // Polygon using Polygon = std::vector<Point>; // https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_3_A coordinate_t signed_area(const Polygon &poly) { coordinate_t res = 0; int sz = poly.size(); for (int i = 0; i < sz; ++i) { int j = i + 1; if (j == sz) j = 0; res += signed_area(ZERO, poly[i], poly[j]); } return res; } // https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_3_A auto area(const Polygon &poly) { return std::abs(signed_area(poly)); } // https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_3_B template <bool accept_180_degree = true> bool is_convex(const Polygon &poly) { int sz = poly.size(); for (int i = 0; i < sz; ++i) { int j = i + 1, k = i + 2; if (j >= sz) j -= sz; if (k >= sz) k -= sz; int dir = isp(poly[i], poly[j], poly[k]); if constexpr (accept_180_degree) { if (dir == ISP::R_CURVE) return false; } else { if (dir != ISP::L_CURVE) return false; } } return true; } // https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_3_C Containment contains(const Polygon &poly, const Point &p) { bool in = false; int sz = poly.size(); for (int i = 0; i < sz; ++i) { int j = i + 1; if (j == sz) j -= sz; Point a = poly[i] - p, b = poly[j] - p; if (gety(a) > gety(b)) std::swap(a, b); if (sgn(gety(a)) <= 0 and sgn(gety(b)) > 0 and sgn(det(a, b)) < 0) in = not in; if (sgn(det(a, b)) == 0 and sgn(dot(a, b)) <= 0) return Containment::ON; } return in ? Containment::IN : Containment::OUT; } // https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_4_B std::tuple<int, int, coordinate_t> convex_diameter(const Polygon& convex) { const int sz = convex.size(); if (sz <= 2) return { 0, sz - 1, abs(convex.front() - convex.back()) }; auto [si, sj] = [&]{ auto [it_min, it_max] = std::minmax_element(convex.begin(), convex.end(), XY_COMPARATOR); return std::pair<int, int> { it_min - convex.begin(), it_max - convex.begin() }; }(); coordinate_t max_dist = -1; std::pair<int, int> argmax{ -1, -1 }; for (int i = si, j = sj; i != sj or j != si;) { if (coordinate_t dij = square_abs(convex[j] - convex[i]); dij > max_dist) max_dist = dij, argmax = { i, j }; int ni = (i + 1) % sz, nj = (j + 1) % sz; if (det(convex[ni] - convex[i], convex[nj] - convex[j]) < 0) i = ni; else j = nj; } return { argmax.first, argmax.second, ::sqrtl(max_dist) }; } // https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_4_C auto convex_cut(const Polygon &convex, const Line &l) { Polygon res; int sz = convex.size(); for (int i = 0; i < sz; ++i) { int j = i + 1; if (j == sz) j -= sz; const Point &a = convex[i], &b = convex[j]; int da = sgn(det(l.b - l.a, a - l.a)); if (da >= 0) res.push_back(a); int db = sgn(det(l.b - l.a, b - l.a)); if (da * db < 0) res.push_back(internal::cross_point(l, Segment(a, b))); } return res; } // Circle // https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_7_A int tangent_num(const Circle &c1, const Circle &c2) { coordinate_t r1 = c1.radius, r2 = c2.radius; if (r1 > r2) return tangent_num(c2, c1); coordinate_t d = abs(c1.center - c2.center); int cp = compare(d, r1 + r2); if (cp > 0) return 4; if (cp == 0) return 3; int cn = compare(d, r2 - r1); if (cn > 0) return 2; if (cn == 0) return 1; return 0; } // https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_7_D std::vector<Point> common_point(const Circle &c, const Line &l) { Point h = projection(c.center, l); coordinate_t d = abs(c.center - h); int cp = compare(d, c.radius); if (cp > 0) return {}; if (cp == 0) return { h }; auto v = (l.a - l.b) * (std::sqrt(c.radius * c.radius - d * d) / abs(l.a - l.b)); return { h - v, h + v }; } // https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_7_H std::vector<Point> common_point(const Circle &c, const Segment &l) { auto ps = common_point(c, Line(l.a, l.b)); ps.erase(std::remove_if(ps.begin(), ps.end(), [&](const auto &p) { return contains(l, p) != Containment::ON; }), ps.end()); return ps; } // https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_7_E std::vector<Point> common_point(const Circle &c1, const Circle &c2) { coordinate_t r1 = c1.radius, r2 = c2.radius; if (r1 > r2) return common_point(c2, c1); coordinate_t d = abs(c1.center - c2.center); int cp = compare(d, r1 + r2), cn = compare(d, r2 - r1); if (cp > 0 or cn < 0) return {}; auto v = c1.center - c2.center; coordinate_t lv = abs(v); if (cp == 0 or cn == 0) { return { c2.center + v * (r2 / lv) }; } coordinate_t lp = d, ln = (r2 * r2 - r1 * r1) / d; coordinate_t p = (lp + ln) / 2, x = sqrt(r2 * r2 - p * p); auto h = c2.center + v * (p / lv); auto t = v * I; return { h + t * (x / lv), h - t * (x / lv) }; } // https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_7_F Containment contains(const Circle &c, const Point &p) { coordinate_t d = abs(c.center - p); int cp = compare(d, c.radius); if (cp > 0) return Containment::OUT; if (cp < 0) return Containment::IN; return Containment::ON; } // https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_7_F std::vector<Point> tangent_to_circle(const Circle &c, const Point &p) { Containment cnt = contains(c, p); if (cnt == Containment::IN) return {}; if (cnt == Containment::ON) return { p }; Point v = c.center - p; coordinate_t r = c.radius, d = abs(v), l = sqrt(d * d - r * r); coordinate_t t = std::asin(r / d); return { p + rot(v, t) * (l / d), p + rot(v, -t) * (l / d) }; } // https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_7_G // returns { Line(p, q) | p is on c1, q is on c2, Line(p, q) is common tangent of c1 and c2 } std::vector<Line> common_tangent(const Circle &c1, const Circle &c2) { int num = tangent_num(c1, c2); std::vector<Line> res; if (num == 0) return res; Point a = c1.center, b = c2.center, v = b - a; coordinate_t r1 = c1.radius, r2 = c2.radius; coordinate_t rp = r1 + r2, rm = r1 - r2, rd = r2 / r1; coordinate_t sqxy = square_abs(v); coordinate_t rtp = std::sqrt(std::max(sqxy - rp * rp, coordinate_t(0))); coordinate_t rtm = std::sqrt(std::max(sqxy - rm * rm, coordinate_t(0))); Point r = v * r1, u = r * Point(0, 1); Point l12 = r * rp, r12 = u * rtp, l34 = r * rm, r34 = u * rtm; Point p14 = (l34 + r34) / sqxy; res.emplace_back(a + p14, b + p14 * rd); if (num == 1) return res; Point p13 = (l34 - r34) / sqxy; res.emplace_back(a + p13, b + p13 * rd); if (num == 2) return res; Point p12 = (l12 + r12) / sqxy; res.emplace_back(a + p12, b - p12 * rd); if (num == 3) return res; Point p11 = (l12 - r12) / sqxy; res.emplace_back(a + p11, b - p11 * rd); return res; } // https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_7_H coordinate_t intersection_area(const Polygon &poly, const Circle &circle) { int sz = poly.size(); coordinate_t r2 = circle.radius * circle.radius; const Point &c = circle.center; coordinate_t area = 0; for (int i = 0; i < sz; i++) { int j = i + 1; if (j >= sz) j -= sz; Point a = poly[i], b = poly[j]; bool in_a = contains(circle, a) == Containment::IN, in_b = contains(circle, b) == Containment::IN; Point ca = a - c, cb = b - c; if (in_a and in_b) { area += det(ca, cb); continue; } std::vector<Point> ps = common_point(circle, Segment(a, b)); if (ps.empty()) { area += r2 * arg(cb / ca); } else { Point s = ps[0]; Point t = ps.size() == 1 ? s : ps[1]; if (compare(square_abs(t - a), square_abs(s - a)) < 0) std::swap(s, t); Point cs = s - c, ct = t - c; area += det(cs, ct); area += in_a ? det(ca, cs) : r2 * arg(cs / ca); area += in_b ? det(ct, cb) : r2 * arg(cb / ct); } } return area / 2; } // https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_7_I coordinate_t intersection_area(const Circle &c1, const Circle &c2) { coordinate_t r = c1.radius, s = c2.radius; if (r < s) return intersection_area(c2, c1); Point a = c1.center, b = c2.center; coordinate_t d = abs(a - b); if (compare(d, r + s) >= 0) return 0; if (compare(d, r - s) <= 0) return PI * s * s; coordinate_t x = (d * d + r * r - s * s) / (2 * d); coordinate_t h = std::sqrt(std::max(r * r - x * x, coordinate_t(0))); coordinate_t a1 = r * r * std::acos(x / r); coordinate_t a2 = s * s * std::acos((d - x) / s); coordinate_t a12 = d * h; return a1 + a2 - a12; } } } // namespace suisen namespace std { template <> struct tuple_size<suisen::geometry::Segment> { static constexpr size_t value = 2; }; template <> struct tuple_element<0, suisen::geometry::Segment> { using type = suisen::geometry::Point; }; template <> struct tuple_element<1, suisen::geometry::Segment> { using type = suisen::geometry::Point; }; template <> struct tuple_size<suisen::geometry::Ray> { static constexpr size_t value = 2; }; template <> struct tuple_element<0, suisen::geometry::Ray> { using type = suisen::geometry::Point; }; template <> struct tuple_element<1, suisen::geometry::Ray> { using type = suisen::geometry::Point; }; template <> struct tuple_size<suisen::geometry::Line> { static constexpr size_t value = 2; }; template <> struct tuple_element<0, suisen::geometry::Line> { using type = suisen::geometry::Point; }; template <> struct tuple_element<1, suisen::geometry::Line> { using type = suisen::geometry::Point; }; } #line 9 "test/src/geom/geometry/CGL_7_H.test.cpp" using namespace suisen::geometry; int main() { std::ios::sync_with_stdio(false); std::cin.tie(nullptr); std::cout << std::fixed << std::setprecision(20); int n; coordinate_t r; std::cin >> n >> r; Polygon poly(n); for (auto &p : poly) std::cin >> p; std::cout << intersection_area(poly, Circle(ZERO, r)) << '\n'; return 0; }