This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub suisen-cp/cp-library-cpp
#define PROBLEM "https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_3_C" #include <cassert> #include <iostream> #include <iomanip> #include "library/integral_geom/geometry.hpp" using namespace suisen::integral_geometry; int main() { std::ios::sync_with_stdio(false); std::cin.tie(nullptr); std::cout << std::fixed << std::setprecision(20); int n; std::cin >> n; Polygon poly(n); for (int i = 0; i < n; ++i) { std::cin >> poly[i]; } int q; std::cin >> q; while (q --> 0) { Point p; std::cin >> p; Inclusion c = contains(poly, p); if (c == Inclusion::IN) { std::cout << 2 << '\n'; } else if (c == Inclusion::ON) { std::cout << 1 << '\n'; } else { std::cout << 0 << '\n'; } } return 0; }
#line 1 "test/src/integral_geom/geometry/CGL_3_C.test.cpp" #define PROBLEM "https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_3_C" #include <cassert> #include <iostream> #include <iomanip> #line 1 "library/integral_geom/geometry.hpp" #include <algorithm> #include <cmath> #line 7 "library/integral_geom/geometry.hpp" #include <vector> #line 1 "library/integral_geom/point.hpp" #line 6 "library/integral_geom/point.hpp" #include <utility> #ifndef COORDINATE_TYPE #define COORDINATE_TYPE long long #endif // COORDINATE_TYPE #ifndef MULTIPLIED_TYPE #define MULTIPLIED_TYPE long long #endif // MULTIPLIED_TYPE namespace suisen::integral_geometry { using coordinate_t = COORDINATE_TYPE; using multiplied_t = MULTIPLIED_TYPE; struct Point { coordinate_t x, y; constexpr Point(coordinate_t x = 0, coordinate_t y = 0) : x(x), y(y) {} template <typename T = coordinate_t, typename U = coordinate_t> operator std::pair<T, U>() const { return std::pair<T, U> { T{ x }, U{ y } }; } template <typename T, typename U> Point& operator=(const std::pair<T, U> &p) { x = p.first, y = p.second; return *this; } friend Point operator+(const Point& p) { return p; } friend Point operator-(const Point& p) { return { -p.x, -p.y }; } friend Point operator+(const Point& lhs, const Point& rhs) { return { lhs.x + rhs.x, lhs.y + rhs.y }; } friend Point operator-(const Point& lhs, const Point& rhs) { return { lhs.x - rhs.x, lhs.y - rhs.y }; } friend Point operator*(const Point& lhs, const Point& rhs) { return { lhs.x * rhs.x - lhs.y * rhs.y, lhs.x * rhs.y + lhs.y * rhs.x }; } friend Point& operator+=(Point& lhs, const Point& rhs) { lhs.x += rhs.x, lhs.y += rhs.y; return lhs; } friend Point& operator-=(Point& lhs, const Point& rhs) { lhs.x -= rhs.x, lhs.y -= rhs.y; return lhs; } friend Point& operator*=(Point& lhs, const Point& rhs) { return lhs = lhs * rhs; } friend Point operator+(const Point& p, coordinate_t real) { return { p.x + real, p.y }; } friend Point operator-(const Point& p, coordinate_t real) { return { p.x - real, p.y }; } friend Point operator*(const Point& p, coordinate_t real) { return { p.x * real, p.y * real }; } friend Point operator/(const Point& p, coordinate_t real) { return { p.x / real, p.y / real }; } friend Point operator+=(Point& p, coordinate_t real) { p.x += real; return p; } friend Point operator-=(Point& p, coordinate_t real) { p.x -= real; return p; } friend Point operator*=(Point& p, coordinate_t real) { p.x *= real, p.y *= real; return p; } friend Point operator/=(Point& p, coordinate_t real) { p.x /= real, p.y /= real; return p; } friend Point operator+(coordinate_t real, const Point& p) { return { real + p.x, p.y }; } friend Point operator-(coordinate_t real, const Point& p) { return { real - p.x, -p.y }; } friend Point operator*(coordinate_t real, const Point& p) { return { real * p.x, real * p.y }; } friend bool operator==(const Point& lhs, const Point& rhs) { return lhs.x == rhs.x and lhs.y == rhs.y; } friend bool operator!=(const Point& lhs, const Point& rhs) { return not (lhs == rhs); } friend std::istream& operator>>(std::istream& in, Point& p) { return in >> p.x >> p.y; } friend std::ostream& operator<<(std::ostream& out, const Point& p) { return out << p.x << ' ' << p.y; } template <std::size_t I> coordinate_t get() const { if constexpr (I == 0) return x; else if constexpr (I == 1) return y; else assert(false); } template <std::size_t I> coordinate_t& get() { if constexpr (I == 0) return x; else if constexpr (I == 1) return y; else assert(false); } }; constexpr Point ZERO = { 0, 0 }; constexpr Point ONE = { 1, 0 }; constexpr Point I = { 0, 1 }; constexpr auto XY_COMPARATOR = [](const Point& p, const Point& q) { return p.x == q.x ? p.y < q.y : p.x < q.x; }; constexpr auto XY_COMPARATOR_GREATER = [](const Point& p, const Point& q) { return p.x == q.x ? p.y > q.y : p.x > q.x; }; constexpr auto YX_COMPARATOR = [](const Point& p, const Point& q) { return p.y == q.y ? p.x < q.x : p.y < q.y; }; constexpr auto YX_COMPARATOR_GREATER = [](const Point& p, const Point& q) { return p.y == q.y ? p.x > q.x : p.y > q.y; }; } // namespace suisen::integral_geometry namespace std { template <> struct tuple_size<suisen::integral_geometry::Point> : integral_constant<size_t, 2> {}; template <size_t I> struct tuple_element<I, suisen::integral_geometry::Point> { using type = suisen::integral_geometry::coordinate_t; }; } #line 10 "library/integral_geom/geometry.hpp" #line 1 "library/integral_geom/inclusion.hpp" namespace suisen::integral_geometry { enum class Inclusion { OUT, ON, IN }; } #line 12 "library/integral_geom/geometry.hpp" namespace suisen::integral_geometry { // relations between three points X, Y, Z. struct ISP { static constexpr int L_CURVE = +1; // +---------------+ Z is in 'a' => ISP = +1 static constexpr int R_CURVE = -1; // |aaaaaaaaaaaaaaa| Z is in 'b' => ISP = -1 static constexpr int FRONT = +2; // |ddd X eee Y ccc| Z is in 'c' => ISP = +2 static constexpr int BACK = -2; // |bbbbbbbbbbbbbbb| Z is in 'd' => ISP = -2 static constexpr int MIDDLE = 0; // +---------------+ Z is in 'e' => ISP = 0 }; int sgn(coordinate_t x) { return x < 0 ? -1 : x > 0 ? +1 : 0; } int compare(coordinate_t x, coordinate_t y) { return sgn(x - y); } Point cartesian(const coordinate_t real, const coordinate_t imag) { return Point(real, imag); } Point conj(const Point& z) { return Point(z.x, -z.y); } double arg(const Point& z) { return std::atan2(z.y, z.x); } multiplied_t square_abs(const Point& z) { return multiplied_t(z.x) * z.x + multiplied_t(z.y) * z.y; } double abs(const Point& z) { return std::sqrt(square_abs(z)); } multiplied_t dot(const Point& a, const Point& b) { return multiplied_t(a.x) * b.x + multiplied_t(a.y) * b.y; } multiplied_t det(const Point& a, const Point& b) { return multiplied_t(a.x) * b.y - multiplied_t(a.y) * b.x; } // https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_1_C int isp(const Point& a, const Point& b, const Point& c) { Point ab = b - a, ac = c - a; coordinate_t det_ab_ac = det(ab, ac); if (det_ab_ac > 0) return ISP::L_CURVE; if (det_ab_ac < 0) return ISP::R_CURVE; if (dot(ab, ac) < 0) return ISP::BACK; if (dot(a - b, c - b) < 0) return ISP::FRONT; return ISP::MIDDLE; } struct Line { Point a, b; Line() = default; Line(const Point& from, const Point& to) : a(from), b(to) {} }; struct Ray { Point a, b; Ray() = default; Ray(const Point& from, const Point& to) : a(from), b(to) {} }; struct Segment { Point a, b; Segment() = default; Segment(const Point& from, const Point& to) : a(from), b(to) {} }; struct Circle { Point center; coordinate_t radius; Circle() = default; Circle(const Point& c, const coordinate_t& r) : center(c), radius(r) {} }; // Triangle coordinate_t signed_area_doubled(const Point& a, const Point& b, const Point& c) { return det(b - a, c - a); } coordinate_t area_doubled(const Point& a, const Point& b, const Point& c) { return std::abs(signed_area_doubled(a, b, c)); } // Line // https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_2_A template <typename line_t_1, typename line_t_2> auto is_parallel(const line_t_1& l1, const line_t_2& l2) -> decltype(l1.a, l1.b, l2.a, l2.b, bool()) { return det(l1.b - l1.a, l2.b - l2.a) == 0; } // https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_2_A template <typename line_t_1, typename line_t_2> auto is_orthogonal(const line_t_1& l1, const line_t_2& l2) -> decltype(l1.a, l1.b, l2.a, l2.b, bool()) { return dot(l1.b - l1.a, l2.b - l2.a) == 0; } template <typename line_t_1, typename line_t_2> auto on_the_same_line(const line_t_1& l1, const line_t_2& l2) -> decltype(l1.a, l1.b, l2.a, l2.b, bool()) { return is_parallel(l1, l2) and det(l1.b - l1.a, l2.a - l1.a) == 0; } Inclusion contains(const Line& l, const Point& p) { if (l.a.x == l.b.x) return p.x == l.a.x ? Inclusion::ON : Inclusion::OUT; coordinate_t a = p.x - l.a.x, b = p.y - l.a.y, c = l.b.x - p.x, d = l.b.y - p.y; return b * c == a * d ? Inclusion::ON : Inclusion::OUT; } Inclusion contains(const Ray& l, const Point& p) { if (contains(Line { l.a, l.b }, p) == Inclusion::OUT) return Inclusion::OUT; if (l.a.x == l.b.x) { if (l.a.y < l.b.y) return p.y >= l.a.y ? Inclusion::ON : Inclusion::OUT; else return p.y <= l.a.y ? Inclusion::ON : Inclusion::OUT; } else if (l.a.x < l.b.x) { return p.x >= l.a.x ? Inclusion::ON : Inclusion::OUT; } else { return p.x <= l.a.x ? Inclusion::ON : Inclusion::OUT; } } Inclusion contains(const Segment& l, const Point& p) { if (contains(Line { l.a, l.b }, p) == Inclusion::OUT) return Inclusion::OUT; if (l.a.x == l.b.x) { if (l.a.y < l.b.y) return p.y >= l.a.y and p.y <= l.b.y ? Inclusion::ON : Inclusion::OUT; else return p.y >= l.b.y and p.y <= l.a.y ? Inclusion::ON : Inclusion::OUT; } else if (l.a.x < l.b.x) { return p.x >= l.a.x and p.x <= l.b.x ? Inclusion::ON : Inclusion::OUT; } else { return p.x >= l.b.x and p.x <= l.a.x ? Inclusion::ON : Inclusion::OUT; } } bool operator==(const Line& l, const Line& m) { return on_the_same_line(l, m); } bool operator==(const Ray& l, const Ray& m) { return on_the_same_line(l, m) and l.a == m.a; } bool operator==(const Segment& l, const Segment& m) { return (l.a == m.a and l.b == m.b) or (l.a == m.b and l.b == m.a); } // "https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_2_B" bool has_common_point(const Segment& l1, const Segment& l2) { int isp_1a = isp(l1.a, l1.b, l2.a), isp_1b = isp(l1.a, l1.b, l2.b); if (isp_1a * isp_1b > 0) return false; int isp_2a = isp(l2.a, l2.b, l1.a), isp_2b = isp(l2.a, l2.b, l1.b); if (isp_2a * isp_2b > 0) return false; return true; } // Polygon using Polygon = std::vector<Point>; // https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_3_A coordinate_t signed_area_doubled(const Polygon& poly) { coordinate_t res = 0; int sz = poly.size(); for (int i = 0; i < sz; ++i) { int j = i + 1; if (j == sz) j = 0; res += signed_area_doubled(ZERO, poly[i], poly[j]); } return res; } // https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_3_A coordinate_t area_doubled(const Polygon& poly) { return std::abs(signed_area_doubled(poly)); } // https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_3_B template <bool accept_180_degree = true> bool is_convex(const Polygon& poly) { int sz = poly.size(); for (int i = 0; i < sz; ++i) { int j = i + 1, k = i + 2; if (j >= sz) j -= sz; if (k >= sz) k -= sz; int dir = isp(poly[i], poly[j], poly[k]); if constexpr (accept_180_degree) { if (dir == ISP::R_CURVE) return false; } else { if (dir != ISP::L_CURVE) return false; } } return true; } // https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_3_C Inclusion contains(const Polygon& poly, const Point& p) { bool in = false; int sz = poly.size(); for (int i = 0; i < sz; ++i) { int j = i + 1; if (j == sz) j -= sz; Point a = poly[i] - p, b = poly[j] - p; if (a.y > b.y) std::swap(a, b); if (a.y <= 0 and b.y > 0 and det(a, b) < 0) in = not in; if (det(a, b) == 0 and dot(a, b) <= 0) return Inclusion::ON; } return in ? Inclusion::IN : Inclusion::OUT; } std::pair<int, int> convex_diameter(const Polygon& convex) { const int sz = convex.size(); if (sz <= 2) return { 0, sz - 1 }; auto [si, sj] = [&]{ auto [it_min, it_max] = std::minmax_element(convex.begin(), convex.end(), XY_COMPARATOR); return std::pair<int, int> { it_min - convex.begin(), it_max - convex.begin() }; }(); coordinate_t max_dist = -1; std::pair<int, int> argmax{ -1, -1 }; for (int i = si, j = sj; i != sj or j != si;) { if (multiplied_t dij = square_abs(convex[j] - convex[i]); dij > max_dist) max_dist = dij, argmax = { i, j }; int ni = (i + 1) % sz, nj = (j + 1) % sz; if (det(convex[ni] - convex[i], convex[nj] - convex[j]) < 0) i = ni; else j = nj; } return argmax; } // Circle // https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_7_A int tangent_num(const Circle& c1, const Circle& c2) { coordinate_t r1 = c1.radius, r2 = c2.radius; if (r1 > r2) return tangent_num(c2, c1); coordinate_t d2 = square_abs(c1.center - c2.center); coordinate_t dp = d2 - (r1 + r2) * (r1 + r2); if (dp > 0) return 4; if (dp == 0) return 3; coordinate_t dn = d2 - (r2 - r1) * (r2 - r1); if (dn > 0) return 2; if (dn == 0) return 1; return 0; } bool has_common_point(const Circle& c1, const Circle& c2) { int tnum = tangent_num(c1, c2); return 1 <= tnum and tnum <= 3; } bool has_cross_point(const Circle& c1, const Circle& c2) { return tangent_num(c1, c2) == 2; } Inclusion contains(const Circle& c, const Point& p) { coordinate_t df = square_abs(c.center - p) - c.radius * c.radius; if (df > 0) return Inclusion::OUT; if (df < 0) return Inclusion::IN; return Inclusion::ON; } } // namespace suisen::integral_geometry #line 8 "test/src/integral_geom/geometry/CGL_3_C.test.cpp" using namespace suisen::integral_geometry; int main() { std::ios::sync_with_stdio(false); std::cin.tie(nullptr); std::cout << std::fixed << std::setprecision(20); int n; std::cin >> n; Polygon poly(n); for (int i = 0; i < n; ++i) { std::cin >> poly[i]; } int q; std::cin >> q; while (q --> 0) { Point p; std::cin >> p; Inclusion c = contains(poly, p); if (c == Inclusion::IN) { std::cout << 2 << '\n'; } else if (c == Inclusion::ON) { std::cout << 1 << '\n'; } else { std::cout << 0 << '\n'; } } return 0; }