This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_7_A"
#include <cassert>
#include <iostream>
#include <iomanip>
#include "library/integral_geom/geometry.hpp"
using namespace suisen::integral_geometry;
int main() {
std::ios::sync_with_stdio(false);
std::cin.tie(nullptr);
std::cout << std::fixed << std::setprecision(20);
Point c1, c2;
coordinate_t r1, r2;
std::cin >> c1 >> r1 >> c2 >> r2;
std::cout << tangent_num(Circle(c1, r1), Circle(c2, r2)) << '\n';
return 0;
}
#line 1 "test/src/integral_geom/geometry/CGL_7_A.test.cpp"
#define PROBLEM "https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_7_A"
#include <cassert>
#include <iostream>
#include <iomanip>
#line 1 "library/integral_geom/geometry.hpp"
#include <algorithm>
#include <cmath>
#line 7 "library/integral_geom/geometry.hpp"
#include <vector>
#line 1 "library/integral_geom/point.hpp"
#line 6 "library/integral_geom/point.hpp"
#include <utility>
#ifndef COORDINATE_TYPE
#define COORDINATE_TYPE long long
#endif // COORDINATE_TYPE
#ifndef MULTIPLIED_TYPE
#define MULTIPLIED_TYPE long long
#endif // MULTIPLIED_TYPE
namespace suisen::integral_geometry {
using coordinate_t = COORDINATE_TYPE;
using multiplied_t = MULTIPLIED_TYPE;
struct Point {
coordinate_t x, y;
constexpr Point(coordinate_t x = 0, coordinate_t y = 0) : x(x), y(y) {}
template <typename T = coordinate_t, typename U = coordinate_t>
operator std::pair<T, U>() const { return std::pair<T, U> { T{ x }, U{ y } }; }
template <typename T, typename U>
Point& operator=(const std::pair<T, U> &p) { x = p.first, y = p.second; return *this; }
friend Point operator+(const Point& p) { return p; }
friend Point operator-(const Point& p) { return { -p.x, -p.y }; }
friend Point operator+(const Point& lhs, const Point& rhs) { return { lhs.x + rhs.x, lhs.y + rhs.y }; }
friend Point operator-(const Point& lhs, const Point& rhs) { return { lhs.x - rhs.x, lhs.y - rhs.y }; }
friend Point operator*(const Point& lhs, const Point& rhs) { return { lhs.x * rhs.x - lhs.y * rhs.y, lhs.x * rhs.y + lhs.y * rhs.x }; }
friend Point& operator+=(Point& lhs, const Point& rhs) { lhs.x += rhs.x, lhs.y += rhs.y; return lhs; }
friend Point& operator-=(Point& lhs, const Point& rhs) { lhs.x -= rhs.x, lhs.y -= rhs.y; return lhs; }
friend Point& operator*=(Point& lhs, const Point& rhs) { return lhs = lhs * rhs; }
friend Point operator+(const Point& p, coordinate_t real) { return { p.x + real, p.y }; }
friend Point operator-(const Point& p, coordinate_t real) { return { p.x - real, p.y }; }
friend Point operator*(const Point& p, coordinate_t real) { return { p.x * real, p.y * real }; }
friend Point operator/(const Point& p, coordinate_t real) { return { p.x / real, p.y / real }; }
friend Point operator+=(Point& p, coordinate_t real) { p.x += real; return p; }
friend Point operator-=(Point& p, coordinate_t real) { p.x -= real; return p; }
friend Point operator*=(Point& p, coordinate_t real) { p.x *= real, p.y *= real; return p; }
friend Point operator/=(Point& p, coordinate_t real) { p.x /= real, p.y /= real; return p; }
friend Point operator+(coordinate_t real, const Point& p) { return { real + p.x, p.y }; }
friend Point operator-(coordinate_t real, const Point& p) { return { real - p.x, -p.y }; }
friend Point operator*(coordinate_t real, const Point& p) { return { real * p.x, real * p.y }; }
friend bool operator==(const Point& lhs, const Point& rhs) { return lhs.x == rhs.x and lhs.y == rhs.y; }
friend bool operator!=(const Point& lhs, const Point& rhs) { return not (lhs == rhs); }
friend std::istream& operator>>(std::istream& in, Point& p) { return in >> p.x >> p.y; }
friend std::ostream& operator<<(std::ostream& out, const Point& p) { return out << p.x << ' ' << p.y; }
template <std::size_t I>
coordinate_t get() const {
if constexpr (I == 0) return x;
else if constexpr (I == 1) return y;
else assert(false);
}
template <std::size_t I>
coordinate_t& get() {
if constexpr (I == 0) return x;
else if constexpr (I == 1) return y;
else assert(false);
}
};
constexpr Point ZERO = { 0, 0 };
constexpr Point ONE = { 1, 0 };
constexpr Point I = { 0, 1 };
constexpr auto XY_COMPARATOR = [](const Point& p, const Point& q) { return p.x == q.x ? p.y < q.y : p.x < q.x; };
constexpr auto XY_COMPARATOR_GREATER = [](const Point& p, const Point& q) { return p.x == q.x ? p.y > q.y : p.x > q.x; };
constexpr auto YX_COMPARATOR = [](const Point& p, const Point& q) { return p.y == q.y ? p.x < q.x : p.y < q.y; };
constexpr auto YX_COMPARATOR_GREATER = [](const Point& p, const Point& q) { return p.y == q.y ? p.x > q.x : p.y > q.y; };
} // namespace suisen::integral_geometry
namespace std {
template <>
struct tuple_size<suisen::integral_geometry::Point> : integral_constant<size_t, 2> {};
template <size_t I>
struct tuple_element<I, suisen::integral_geometry::Point> { using type = suisen::integral_geometry::coordinate_t; };
}
#line 10 "library/integral_geom/geometry.hpp"
#line 1 "library/integral_geom/inclusion.hpp"
namespace suisen::integral_geometry {
enum class Inclusion { OUT, ON, IN };
}
#line 12 "library/integral_geom/geometry.hpp"
namespace suisen::integral_geometry {
// relations between three points X, Y, Z.
struct ISP {
static constexpr int L_CURVE = +1; // +---------------+ Z is in 'a' => ISP = +1
static constexpr int R_CURVE = -1; // |aaaaaaaaaaaaaaa| Z is in 'b' => ISP = -1
static constexpr int FRONT = +2; // |ddd X eee Y ccc| Z is in 'c' => ISP = +2
static constexpr int BACK = -2; // |bbbbbbbbbbbbbbb| Z is in 'd' => ISP = -2
static constexpr int MIDDLE = 0; // +---------------+ Z is in 'e' => ISP = 0
};
int sgn(coordinate_t x) { return x < 0 ? -1 : x > 0 ? +1 : 0; }
int compare(coordinate_t x, coordinate_t y) { return sgn(x - y); }
Point cartesian(const coordinate_t real, const coordinate_t imag) { return Point(real, imag); }
Point conj(const Point& z) { return Point(z.x, -z.y); }
double arg(const Point& z) { return std::atan2(z.y, z.x); }
multiplied_t square_abs(const Point& z) { return multiplied_t(z.x) * z.x + multiplied_t(z.y) * z.y; }
double abs(const Point& z) { return std::sqrt(square_abs(z)); }
multiplied_t dot(const Point& a, const Point& b) { return multiplied_t(a.x) * b.x + multiplied_t(a.y) * b.y; }
multiplied_t det(const Point& a, const Point& b) { return multiplied_t(a.x) * b.y - multiplied_t(a.y) * b.x; }
// https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_1_C
int isp(const Point& a, const Point& b, const Point& c) {
Point ab = b - a, ac = c - a;
coordinate_t det_ab_ac = det(ab, ac);
if (det_ab_ac > 0) return ISP::L_CURVE;
if (det_ab_ac < 0) return ISP::R_CURVE;
if (dot(ab, ac) < 0) return ISP::BACK;
if (dot(a - b, c - b) < 0) return ISP::FRONT;
return ISP::MIDDLE;
}
struct Line {
Point a, b;
Line() = default;
Line(const Point& from, const Point& to) : a(from), b(to) {}
};
struct Ray {
Point a, b;
Ray() = default;
Ray(const Point& from, const Point& to) : a(from), b(to) {}
};
struct Segment {
Point a, b;
Segment() = default;
Segment(const Point& from, const Point& to) : a(from), b(to) {}
};
struct Circle {
Point center;
coordinate_t radius;
Circle() = default;
Circle(const Point& c, const coordinate_t& r) : center(c), radius(r) {}
};
// Triangle
coordinate_t signed_area_doubled(const Point& a, const Point& b, const Point& c) {
return det(b - a, c - a);
}
coordinate_t area_doubled(const Point& a, const Point& b, const Point& c) {
return std::abs(signed_area_doubled(a, b, c));
}
// Line
// https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_2_A
template <typename line_t_1, typename line_t_2>
auto is_parallel(const line_t_1& l1, const line_t_2& l2) -> decltype(l1.a, l1.b, l2.a, l2.b, bool()) {
return det(l1.b - l1.a, l2.b - l2.a) == 0;
}
// https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_2_A
template <typename line_t_1, typename line_t_2>
auto is_orthogonal(const line_t_1& l1, const line_t_2& l2) -> decltype(l1.a, l1.b, l2.a, l2.b, bool()) {
return dot(l1.b - l1.a, l2.b - l2.a) == 0;
}
template <typename line_t_1, typename line_t_2>
auto on_the_same_line(const line_t_1& l1, const line_t_2& l2) -> decltype(l1.a, l1.b, l2.a, l2.b, bool()) {
return is_parallel(l1, l2) and det(l1.b - l1.a, l2.a - l1.a) == 0;
}
Inclusion contains(const Line& l, const Point& p) {
if (l.a.x == l.b.x) return p.x == l.a.x ? Inclusion::ON : Inclusion::OUT;
coordinate_t a = p.x - l.a.x, b = p.y - l.a.y, c = l.b.x - p.x, d = l.b.y - p.y;
return b * c == a * d ? Inclusion::ON : Inclusion::OUT;
}
Inclusion contains(const Ray& l, const Point& p) {
if (contains(Line { l.a, l.b }, p) == Inclusion::OUT) return Inclusion::OUT;
if (l.a.x == l.b.x) {
if (l.a.y < l.b.y) return p.y >= l.a.y ? Inclusion::ON : Inclusion::OUT;
else return p.y <= l.a.y ? Inclusion::ON : Inclusion::OUT;
} else if (l.a.x < l.b.x) {
return p.x >= l.a.x ? Inclusion::ON : Inclusion::OUT;
} else {
return p.x <= l.a.x ? Inclusion::ON : Inclusion::OUT;
}
}
Inclusion contains(const Segment& l, const Point& p) {
if (contains(Line { l.a, l.b }, p) == Inclusion::OUT) return Inclusion::OUT;
if (l.a.x == l.b.x) {
if (l.a.y < l.b.y) return p.y >= l.a.y and p.y <= l.b.y ? Inclusion::ON : Inclusion::OUT;
else return p.y >= l.b.y and p.y <= l.a.y ? Inclusion::ON : Inclusion::OUT;
} else if (l.a.x < l.b.x) {
return p.x >= l.a.x and p.x <= l.b.x ? Inclusion::ON : Inclusion::OUT;
} else {
return p.x >= l.b.x and p.x <= l.a.x ? Inclusion::ON : Inclusion::OUT;
}
}
bool operator==(const Line& l, const Line& m) {
return on_the_same_line(l, m);
}
bool operator==(const Ray& l, const Ray& m) {
return on_the_same_line(l, m) and l.a == m.a;
}
bool operator==(const Segment& l, const Segment& m) {
return (l.a == m.a and l.b == m.b) or (l.a == m.b and l.b == m.a);
}
// "https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_2_B"
bool has_common_point(const Segment& l1, const Segment& l2) {
int isp_1a = isp(l1.a, l1.b, l2.a), isp_1b = isp(l1.a, l1.b, l2.b);
if (isp_1a * isp_1b > 0) return false;
int isp_2a = isp(l2.a, l2.b, l1.a), isp_2b = isp(l2.a, l2.b, l1.b);
if (isp_2a * isp_2b > 0) return false;
return true;
}
// Polygon
using Polygon = std::vector<Point>;
// https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_3_A
coordinate_t signed_area_doubled(const Polygon& poly) {
coordinate_t res = 0;
int sz = poly.size();
for (int i = 0; i < sz; ++i) {
int j = i + 1;
if (j == sz) j = 0;
res += signed_area_doubled(ZERO, poly[i], poly[j]);
}
return res;
}
// https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_3_A
coordinate_t area_doubled(const Polygon& poly) {
return std::abs(signed_area_doubled(poly));
}
// https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_3_B
template <bool accept_180_degree = true>
bool is_convex(const Polygon& poly) {
int sz = poly.size();
for (int i = 0; i < sz; ++i) {
int j = i + 1, k = i + 2;
if (j >= sz) j -= sz;
if (k >= sz) k -= sz;
int dir = isp(poly[i], poly[j], poly[k]);
if constexpr (accept_180_degree) {
if (dir == ISP::R_CURVE) return false;
} else {
if (dir != ISP::L_CURVE) return false;
}
}
return true;
}
// https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_3_C
Inclusion contains(const Polygon& poly, const Point& p) {
bool in = false;
int sz = poly.size();
for (int i = 0; i < sz; ++i) {
int j = i + 1;
if (j == sz) j -= sz;
Point a = poly[i] - p, b = poly[j] - p;
if (a.y > b.y) std::swap(a, b);
if (a.y <= 0 and b.y > 0 and det(a, b) < 0) in = not in;
if (det(a, b) == 0 and dot(a, b) <= 0) return Inclusion::ON;
}
return in ? Inclusion::IN : Inclusion::OUT;
}
std::pair<int, int> convex_diameter(const Polygon& convex) {
const int sz = convex.size();
if (sz <= 2) return { 0, sz - 1 };
auto [si, sj] = [&]{
auto [it_min, it_max] = std::minmax_element(convex.begin(), convex.end(), XY_COMPARATOR);
return std::pair<int, int> { it_min - convex.begin(), it_max - convex.begin() };
}();
coordinate_t max_dist = -1;
std::pair<int, int> argmax{ -1, -1 };
for (int i = si, j = sj; i != sj or j != si;) {
if (multiplied_t dij = square_abs(convex[j] - convex[i]); dij > max_dist) max_dist = dij, argmax = { i, j };
int ni = (i + 1) % sz, nj = (j + 1) % sz;
if (det(convex[ni] - convex[i], convex[nj] - convex[j]) < 0) i = ni;
else j = nj;
}
return argmax;
}
// Circle
// https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_7_A
int tangent_num(const Circle& c1, const Circle& c2) {
coordinate_t r1 = c1.radius, r2 = c2.radius;
if (r1 > r2) return tangent_num(c2, c1);
coordinate_t d2 = square_abs(c1.center - c2.center);
coordinate_t dp = d2 - (r1 + r2) * (r1 + r2);
if (dp > 0) return 4;
if (dp == 0) return 3;
coordinate_t dn = d2 - (r2 - r1) * (r2 - r1);
if (dn > 0) return 2;
if (dn == 0) return 1;
return 0;
}
bool has_common_point(const Circle& c1, const Circle& c2) {
int tnum = tangent_num(c1, c2);
return 1 <= tnum and tnum <= 3;
}
bool has_cross_point(const Circle& c1, const Circle& c2) {
return tangent_num(c1, c2) == 2;
}
Inclusion contains(const Circle& c, const Point& p) {
coordinate_t df = square_abs(c.center - p) - c.radius * c.radius;
if (df > 0) return Inclusion::OUT;
if (df < 0) return Inclusion::IN;
return Inclusion::ON;
}
} // namespace suisen::integral_geometry
#line 8 "test/src/integral_geom/geometry/CGL_7_A.test.cpp"
using namespace suisen::integral_geometry;
int main() {
std::ios::sync_with_stdio(false);
std::cin.tie(nullptr);
std::cout << std::fixed << std::setprecision(20);
Point c1, c2;
coordinate_t r1, r2;
std::cin >> c1 >> r1 >> c2 >> r2;
std::cout << tangent_num(Circle(c1, r1), Circle(c2, r2)) << '\n';
return 0;
}