This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub suisen-cp/cp-library-cpp
#define PROBLEM "https://atcoder.jp/contests/abc213/tasks/abc213_g" #include <iostream> #include <atcoder/modint> using mint = atcoder::modint998244353; #include "library/math/set_power_series.hpp" #include "library/transform/subset.hpp" using namespace suisen; int main() { int n, m; std::cin >> n >> m; std::vector<int> c(1 << n, 0); for (int i = 0; i < m; ++i) { int u, v; std::cin >> u >> v; --u, --v; c[(1 << u) | (1 << v)] = 1; } suisen::subset_transform::zeta(c); suisen::SetPowerSeries<mint> g(n); for (int i = 0; i < 1 << n; ++i) { g[i] = mint(2).pow(c[i]); } assert(g.inv() * g == suisen::SetPowerSeries<mint>::one(n)); auto f = g.log(); auto h = f.exp(); // test of exp assert(g == h); std::vector<mint> ans(n, 0); int full = (1 << n) - 1; for (int i = 1; i < 1 << n; i += 2) { mint x = f[i] * g[full ^ i]; for (int j = 0; j < n; ++j) ans[j] += ((i >> j) & 1) * x; } for (int i = 1; i < n; ++i) { std::cout << ans[i].val() << std::endl; } return 0; }
#line 1 "test/src/math/set_power_series/abc213_g.test.cpp" #define PROBLEM "https://atcoder.jp/contests/abc213/tasks/abc213_g" #include <iostream> #include <atcoder/modint> using mint = atcoder::modint998244353; #line 1 "library/math/set_power_series.hpp" #line 1 "library/convolution/subset_convolution.hpp" #line 1 "library/polynomial/fps_naive.hpp" #include <cassert> #include <cmath> #include <limits> #include <type_traits> #include <vector> #line 1 "library/type_traits/type_traits.hpp" #line 7 "library/type_traits/type_traits.hpp" namespace suisen { template <typename ...Constraints> using constraints_t = std::enable_if_t<std::conjunction_v<Constraints...>, std::nullptr_t>; template <typename T, typename = std::nullptr_t> struct bitnum { static constexpr int value = 0; }; template <typename T> struct bitnum<T, constraints_t<std::is_integral<T>>> { static constexpr int value = std::numeric_limits<std::make_unsigned_t<T>>::digits; }; template <typename T> static constexpr int bitnum_v = bitnum<T>::value; template <typename T, size_t n> struct is_nbit { static constexpr bool value = bitnum_v<T> == n; }; template <typename T, size_t n> static constexpr bool is_nbit_v = is_nbit<T, n>::value; template <typename T, typename = std::nullptr_t> struct safely_multipliable { using type = T; }; template <typename T> struct safely_multipliable<T, constraints_t<std::is_signed<T>, is_nbit<T, 32>>> { using type = long long; }; template <typename T> struct safely_multipliable<T, constraints_t<std::is_signed<T>, is_nbit<T, 64>>> { using type = __int128_t; }; template <typename T> struct safely_multipliable<T, constraints_t<std::is_unsigned<T>, is_nbit<T, 32>>> { using type = unsigned long long; }; template <typename T> struct safely_multipliable<T, constraints_t<std::is_unsigned<T>, is_nbit<T, 64>>> { using type = __uint128_t; }; template <typename T> using safely_multipliable_t = typename safely_multipliable<T>::type; template <typename T, typename = void> struct rec_value_type { using type = T; }; template <typename T> struct rec_value_type<T, std::void_t<typename T::value_type>> { using type = typename rec_value_type<typename T::value_type>::type; }; template <typename T> using rec_value_type_t = typename rec_value_type<T>::type; template <typename T> class is_iterable { template <typename T_> static auto test(T_ e) -> decltype(e.begin(), e.end(), std::true_type{}); static std::false_type test(...); public: static constexpr bool value = decltype(test(std::declval<T>()))::value; }; template <typename T> static constexpr bool is_iterable_v = is_iterable<T>::value; template <typename T> class is_writable { template <typename T_> static auto test(T_ e) -> decltype(std::declval<std::ostream&>() << e, std::true_type{}); static std::false_type test(...); public: static constexpr bool value = decltype(test(std::declval<T>()))::value; }; template <typename T> static constexpr bool is_writable_v = is_writable<T>::value; template <typename T> class is_readable { template <typename T_> static auto test(T_ e) -> decltype(std::declval<std::istream&>() >> e, std::true_type{}); static std::false_type test(...); public: static constexpr bool value = decltype(test(std::declval<T>()))::value; }; template <typename T> static constexpr bool is_readable_v = is_readable<T>::value; } // namespace suisen #line 11 "library/polynomial/fps_naive.hpp" #line 1 "library/math/modint_extension.hpp" #line 5 "library/math/modint_extension.hpp" #include <optional> /** * refernce: https://37zigen.com/tonelli-shanks-algorithm/ * calculates x s.t. x^2 = a mod p in O((log p)^2). */ template <typename mint> std::optional<mint> safe_sqrt(mint a) { static int p = mint::mod(); if (a == 0) return std::make_optional(0); if (p == 2) return std::make_optional(a); if (a.pow((p - 1) / 2) != 1) return std::nullopt; mint b = 1; while (b.pow((p - 1) / 2) == 1) ++b; static int tlz = __builtin_ctz(p - 1), q = (p - 1) >> tlz; mint x = a.pow((q + 1) / 2); b = b.pow(q); for (int shift = 2; x * x != a; ++shift) { mint e = a.inv() * x * x; if (e.pow(1 << (tlz - shift)) != 1) x *= b; b *= b; } return std::make_optional(x); } /** * calculates x s.t. x^2 = a mod p in O((log p)^2). * if not exists, raises runtime error. */ template <typename mint> auto sqrt(mint a) -> decltype(mint::mod(), mint()) { return *safe_sqrt(a); } template <typename mint> auto log(mint a) -> decltype(mint::mod(), mint()) { assert(a == 1); return 0; } template <typename mint> auto exp(mint a) -> decltype(mint::mod(), mint()) { assert(a == 0); return 1; } template <typename mint, typename T> auto pow(mint a, T b) -> decltype(mint::mod(), mint()) { return a.pow(b); } template <typename mint> auto inv(mint a) -> decltype(mint::mod(), mint()) { return a.inv(); } #line 1 "library/math/inv_mods.hpp" #line 5 "library/math/inv_mods.hpp" namespace suisen { template <typename mint> class inv_mods { public: inv_mods() = default; inv_mods(int n) { ensure(n); } const mint& operator[](int i) const { ensure(i); return invs[i]; } static void ensure(int n) { int sz = invs.size(); if (sz < 2) invs = { 0, 1 }, sz = 2; if (sz < n + 1) { invs.resize(n + 1); for (int i = sz; i <= n; ++i) invs[i] = mint(mod - mod / i) * invs[mod % i]; } } private: static std::vector<mint> invs; static constexpr int mod = mint::mod(); }; template <typename mint> std::vector<mint> inv_mods<mint>::invs{}; template <typename mint> std::vector<mint> get_invs(const std::vector<mint>& vs) { const int n = vs.size(); mint p = 1; for (auto& e : vs) { p *= e; assert(e != 0); } mint ip = p.inv(); std::vector<mint> rp(n + 1); rp[n] = 1; for (int i = n - 1; i >= 0; --i) { rp[i] = rp[i + 1] * vs[i]; } std::vector<mint> res(n); for (int i = 0; i < n; ++i) { res[i] = ip * rp[i + 1]; ip *= vs[i]; } return res; } } #line 14 "library/polynomial/fps_naive.hpp" namespace suisen { template <typename T> struct FPSNaive : std::vector<T> { static inline int MAX_SIZE = std::numeric_limits<int>::max() / 2; using value_type = T; using element_type = rec_value_type_t<T>; using std::vector<value_type>::vector; FPSNaive(const std::initializer_list<value_type> l) : std::vector<value_type>::vector(l) {} FPSNaive(const std::vector<value_type>& v) : std::vector<value_type>::vector(v) {} static void set_max_size(int n) { FPSNaive<T>::MAX_SIZE = n; } const value_type operator[](int n) const { return n <= deg() ? unsafe_get(n) : value_type{ 0 }; } value_type& operator[](int n) { return ensure_deg(n), unsafe_get(n); } int size() const { return std::vector<value_type>::size(); } int deg() const { return size() - 1; } int normalize() { while (size() and this->back() == value_type{ 0 }) this->pop_back(); return deg(); } FPSNaive& cut_inplace(int n) { if (size() > n) this->resize(std::max(0, n)); return *this; } FPSNaive cut(int n) const { FPSNaive f = FPSNaive(*this).cut_inplace(n); return f; } FPSNaive operator+() const { return FPSNaive(*this); } FPSNaive operator-() const { FPSNaive f(*this); for (auto& e : f) e = -e; return f; } FPSNaive& operator++() { return ++(*this)[0], * this; } FPSNaive& operator--() { return --(*this)[0], * this; } FPSNaive& operator+=(const value_type x) { return (*this)[0] += x, *this; } FPSNaive& operator-=(const value_type x) { return (*this)[0] -= x, *this; } FPSNaive& operator+=(const FPSNaive& g) { ensure_deg(g.deg()); for (int i = 0; i <= g.deg(); ++i) unsafe_get(i) += g.unsafe_get(i); return *this; } FPSNaive& operator-=(const FPSNaive& g) { ensure_deg(g.deg()); for (int i = 0; i <= g.deg(); ++i) unsafe_get(i) -= g.unsafe_get(i); return *this; } FPSNaive& operator*=(const FPSNaive& g) { return *this = *this * g; } FPSNaive& operator*=(const value_type x) { for (auto& e : *this) e *= x; return *this; } FPSNaive& operator/=(const FPSNaive& g) { return *this = *this / g; } FPSNaive& operator%=(const FPSNaive& g) { return *this = *this % g; } FPSNaive& operator<<=(const int shamt) { this->insert(this->begin(), shamt, value_type{ 0 }); return *this; } FPSNaive& operator>>=(const int shamt) { if (shamt > size()) this->clear(); else this->erase(this->begin(), this->begin() + shamt); return *this; } friend FPSNaive operator+(FPSNaive f, const FPSNaive& g) { f += g; return f; } friend FPSNaive operator+(FPSNaive f, const value_type& x) { f += x; return f; } friend FPSNaive operator-(FPSNaive f, const FPSNaive& g) { f -= g; return f; } friend FPSNaive operator-(FPSNaive f, const value_type& x) { f -= x; return f; } friend FPSNaive operator*(const FPSNaive& f, const FPSNaive& g) { if (f.empty() or g.empty()) return FPSNaive{}; const int n = f.size(), m = g.size(); FPSNaive h(std::min(MAX_SIZE, n + m - 1)); for (int i = 0; i < n; ++i) for (int j = 0; j < m; ++j) { if (i + j >= MAX_SIZE) break; h.unsafe_get(i + j) += f.unsafe_get(i) * g.unsafe_get(j); } return h; } friend FPSNaive operator*(FPSNaive f, const value_type& x) { f *= x; return f; } friend FPSNaive operator/(FPSNaive f, const FPSNaive& g) { return std::move(f.div_mod(g).first); } friend FPSNaive operator%(FPSNaive f, const FPSNaive& g) { return std::move(f.div_mod(g).second); } friend FPSNaive operator*(const value_type x, FPSNaive f) { f *= x; return f; } friend FPSNaive operator<<(FPSNaive f, const int shamt) { f <<= shamt; return f; } friend FPSNaive operator>>(FPSNaive f, const int shamt) { f >>= shamt; return f; } std::pair<FPSNaive, FPSNaive> div_mod(FPSNaive g) const { FPSNaive f = *this; const int fd = f.normalize(), gd = g.normalize(); assert(gd >= 0); if (fd < gd) return { FPSNaive{}, f }; if (gd == 0) return { f *= g.unsafe_get(0).inv(), FPSNaive{} }; const int k = f.deg() - gd; value_type head_inv = g.unsafe_get(gd).inv(); FPSNaive q(k + 1); for (int i = k; i >= 0; --i) { value_type div = f.unsafe_get(i + gd) * head_inv; q.unsafe_get(i) = div; for (int j = 0; j <= gd; ++j) f.unsafe_get(i + j) -= div * g.unsafe_get(j); } f.cut_inplace(gd); f.normalize(); return { q, f }; } friend bool operator==(const FPSNaive& f, const FPSNaive& g) { const int n = f.size(), m = g.size(); if (n < m) return g == f; for (int i = 0; i < m; ++i) if (f.unsafe_get(i) != g.unsafe_get(i)) return false; for (int i = m; i < n; ++i) if (f.unsafe_get(i) != 0) return false; return true; } friend bool operator!=(const FPSNaive& f, const FPSNaive& g) { return not (f == g); } FPSNaive mul(const FPSNaive& g, int n = -1) const { if (n < 0) n = size(); if (this->empty() or g.empty()) return FPSNaive{}; const int m = size(), k = g.size(); FPSNaive h(std::min(n, m + k - 1)); for (int i = 0; i < m; ++i) { for (int j = 0, jr = std::min(k, n - i); j < jr; ++j) { h.unsafe_get(i + j) += unsafe_get(i) * g.unsafe_get(j); } } return h; } FPSNaive diff() const { if (this->empty()) return {}; FPSNaive g(size() - 1); for (int i = 1; i <= deg(); ++i) g.unsafe_get(i - 1) = unsafe_get(i) * i; return g; } FPSNaive intg() const { const int n = size(); FPSNaive g(n + 1); for (int i = 0; i < n; ++i) g.unsafe_get(i + 1) = unsafe_get(i) * invs[i + 1]; if (g.deg() > MAX_SIZE) g.cut_inplace(MAX_SIZE); return g; } FPSNaive inv(int n = -1) const { if (n < 0) n = size(); FPSNaive g(n); const value_type inv_f0 = ::inv(unsafe_get(0)); g.unsafe_get(0) = inv_f0; for (int i = 1; i < n; ++i) { for (int j = 1; j <= i; ++j) g.unsafe_get(i) -= g.unsafe_get(i - j) * (*this)[j]; g.unsafe_get(i) *= inv_f0; } return g; } FPSNaive exp(int n = -1) const { if (n < 0) n = size(); assert(unsafe_get(0) == value_type{ 0 }); FPSNaive g(n); g.unsafe_get(0) = value_type{ 1 }; for (int i = 1; i < n; ++i) { for (int j = 1; j <= i; ++j) g.unsafe_get(i) += j * g.unsafe_get(i - j) * (*this)[j]; g.unsafe_get(i) *= invs[i]; } return g; } FPSNaive log(int n = -1) const { if (n < 0) n = size(); assert(unsafe_get(0) == value_type{ 1 }); FPSNaive g(n); g.unsafe_get(0) = value_type{ 0 }; for (int i = 1; i < n; ++i) { g.unsafe_get(i) = i * (*this)[i]; for (int j = 1; j < i; ++j) g.unsafe_get(i) -= (i - j) * g.unsafe_get(i - j) * (*this)[j]; g.unsafe_get(i) *= invs[i]; } return g; } FPSNaive pow(const long long k, int n = -1) const { if (n < 0) n = size(); if (k == 0) { FPSNaive res(n); res[0] = 1; return res; } int z = 0; while (z < size() and unsafe_get(z) == value_type{ 0 }) ++z; if (z == size() or z > (n - 1) / k) return FPSNaive(n, 0); const int m = n - z * k; FPSNaive g(m); const value_type inv_f0 = ::inv(unsafe_get(z)); g.unsafe_get(0) = unsafe_get(z).pow(k); for (int i = 1; i < m; ++i) { for (int j = 1; j <= i; ++j) g.unsafe_get(i) += (element_type{ k } *j - (i - j)) * g.unsafe_get(i - j) * (*this)[z + j]; g.unsafe_get(i) *= inv_f0 * invs[i]; } g <<= z * k; return g; } std::optional<FPSNaive> safe_sqrt(int n = -1) const { if (n < 0) n = size(); int dl = 0; while (dl < size() and unsafe_get(dl) == value_type{ 0 }) ++dl; if (dl == size()) return FPSNaive(n, 0); if (dl & 1) return std::nullopt; const int m = n - dl / 2; FPSNaive g(m); auto opt_g0 = ::safe_sqrt((*this)[dl]); if (not opt_g0.has_value()) return std::nullopt; g.unsafe_get(0) = *opt_g0; value_type inv_2g0 = ::inv(2 * g.unsafe_get(0)); for (int i = 1; i < m; ++i) { g.unsafe_get(i) = (*this)[dl + i]; for (int j = 1; j < i; ++j) g.unsafe_get(i) -= g.unsafe_get(j) * g.unsafe_get(i - j); g.unsafe_get(i) *= inv_2g0; } g <<= dl / 2; return g; } FPSNaive sqrt(int n = -1) const { if (n < 0) n = size(); return *safe_sqrt(n); } value_type eval(value_type x) const { value_type y = 0; for (int i = size() - 1; i >= 0; --i) y = y * x + unsafe_get(i); return y; } private: static inline inv_mods<element_type> invs; void ensure_deg(int d) { if (deg() < d) this->resize(d + 1, value_type{ 0 }); } const value_type& unsafe_get(int i) const { return std::vector<value_type>::operator[](i); } value_type& unsafe_get(int i) { return std::vector<value_type>::operator[](i); } }; } // namespace suisen template <typename mint> suisen::FPSNaive<mint> sqrt(suisen::FPSNaive<mint> a) { return a.sqrt(); } template <typename mint> suisen::FPSNaive<mint> log(suisen::FPSNaive<mint> a) { return a.log(); } template <typename mint> suisen::FPSNaive<mint> exp(suisen::FPSNaive<mint> a) { return a.exp(); } template <typename mint, typename T> suisen::FPSNaive<mint> pow(suisen::FPSNaive<mint> a, T b) { return a.pow(b); } template <typename mint> suisen::FPSNaive<mint> inv(suisen::FPSNaive<mint> a) { return a.inv(); } #line 5 "library/convolution/subset_convolution.hpp" #line 1 "library/transform/subset.hpp" #line 1 "library/transform/kronecker_power.hpp" #line 5 "library/transform/kronecker_power.hpp" #include <utility> #line 7 "library/transform/kronecker_power.hpp" #line 1 "library/util/default_operator.hpp" namespace suisen { namespace default_operator { template <typename T> auto zero() -> decltype(T { 0 }) { return T { 0 }; } template <typename T> auto one() -> decltype(T { 1 }) { return T { 1 }; } template <typename T> auto add(const T &x, const T &y) -> decltype(x + y) { return x + y; } template <typename T> auto sub(const T &x, const T &y) -> decltype(x - y) { return x - y; } template <typename T> auto mul(const T &x, const T &y) -> decltype(x * y) { return x * y; } template <typename T> auto div(const T &x, const T &y) -> decltype(x / y) { return x / y; } template <typename T> auto mod(const T &x, const T &y) -> decltype(x % y) { return x % y; } template <typename T> auto neg(const T &x) -> decltype(-x) { return -x; } template <typename T> auto inv(const T &x) -> decltype(one<T>() / x) { return one<T>() / x; } } // default_operator namespace default_operator_noref { template <typename T> auto zero() -> decltype(T { 0 }) { return T { 0 }; } template <typename T> auto one() -> decltype(T { 1 }) { return T { 1 }; } template <typename T> auto add(T x, T y) -> decltype(x + y) { return x + y; } template <typename T> auto sub(T x, T y) -> decltype(x - y) { return x - y; } template <typename T> auto mul(T x, T y) -> decltype(x * y) { return x * y; } template <typename T> auto div(T x, T y) -> decltype(x / y) { return x / y; } template <typename T> auto mod(T x, T y) -> decltype(x % y) { return x % y; } template <typename T> auto neg(T x) -> decltype(-x) { return -x; } template <typename T> auto inv(T x) -> decltype(one<T>() / x) { return one<T>() / x; } } // default_operator } // namespace suisen #line 9 "library/transform/kronecker_power.hpp" namespace suisen { namespace kronecker_power_transform { namespace internal { template <typename UnitTransform, typename ReferenceGetter, std::size_t... Seq> void unit_transform(UnitTransform transform, ReferenceGetter ref_getter, std::index_sequence<Seq...>) { transform(ref_getter(Seq)...); } } template <typename T, std::size_t D, auto unit_transform> void kronecker_power_transform(std::vector<T> &x) { const std::size_t n = x.size(); for (std::size_t block = 1; block < n; block *= D) { for (std::size_t l = 0; l < n; l += D * block) { for (std::size_t offset = l; offset < l + block; ++offset) { const auto ref_getter = [&](std::size_t i) -> T& { return x[offset + i * block]; }; internal::unit_transform(unit_transform, ref_getter, std::make_index_sequence<D>()); } } } } template <typename T, typename UnitTransform> void kronecker_power_transform(std::vector<T> &x, const std::size_t D, UnitTransform unit_transform) { const std::size_t n = x.size(); std::vector<T> work(D); for (std::size_t block = 1; block < n; block *= D) { for (std::size_t l = 0; l < n; l += D * block) { for (std::size_t offset = l; offset < l + block; ++offset) { for (std::size_t i = 0; i < D; ++i) work[i] = x[offset + i * block]; unit_transform(work); for (std::size_t i = 0; i < D; ++i) x[offset + i * block] = work[i]; } } } } template <typename T, auto e = default_operator::zero<T>, auto add = default_operator::add<T>, auto mul = default_operator::mul<T>> auto kronecker_power_transform(std::vector<T> &x, const std::vector<std::vector<T>> &A) -> decltype(e(), add(std::declval<T>(), std::declval<T>()), mul(std::declval<T>(), std::declval<T>()), void()) { const std::size_t D = A.size(); assert(D == A[0].size()); auto unit_transform = [&](std::vector<T> &x) { std::vector<T> y(D, e()); for (std::size_t i = 0; i < D; ++i) for (std::size_t j = 0; j < D; ++j) { y[i] = add(y[i], mul(A[i][j], x[j])); } x.swap(y); }; kronecker_power_transform<T>(x, D, unit_transform); } } } // namespace suisen #line 5 "library/transform/subset.hpp" namespace suisen::subset_transform { namespace internal { template <typename T, auto add = default_operator::add<T>> void zeta_unit_transform(T &x0, T &x1) { // 1, 0 x1 = add(x1, x0); // 1, 1 } template <typename T, auto sub = default_operator::sub<T>> void mobius_unit_transform(T &x0, T &x1) { // 1, 0 x1 = sub(x1, x0); // -1, 1 } } // namespace internal using kronecker_power_transform::kronecker_power_transform; template <typename T, auto add = default_operator::add<T>> void zeta(std::vector<T> &a) { kronecker_power_transform<T, 2, internal::zeta_unit_transform<T, add>>(a); } template <typename T, auto sub = default_operator::sub<T>> void mobius(std::vector<T> &a) { kronecker_power_transform<T, 2, internal::mobius_unit_transform<T, sub>>(a); } } // namespace suisen::subset_transform #line 7 "library/convolution/subset_convolution.hpp" namespace suisen { namespace ranked_subset_transform { template <typename T> using polynomial_t = FPSNaive<T>; namespace internal { template <typename T> std::vector<polynomial_t<T>> ranked(const std::vector<T>& a) { const int n = a.size(); assert((-n & n) == n); std::vector fs(n, polynomial_t<T>(__builtin_ctz(n) + 1, T{ 0 })); for (int i = 0; i < n; ++i) fs[i][__builtin_popcount(i)] = a[i]; return fs; } template <typename T> std::vector<T> deranked(const std::vector<polynomial_t<T>>& polys) { const int n = polys.size(); assert((-n & n) == n); std::vector<T> a(n); for (int i = 0; i < n; ++i) a[i] = polys[i][__builtin_popcount(i)]; return a; } } // suisen::ranked_subset_transform::internal template <typename T> std::vector<polynomial_t<T>> ranked_zeta(const std::vector<T>& a) { std::vector<polynomial_t<T>> ranked = internal::ranked<T>(a); subset_transform::zeta(ranked); return ranked; } template <typename T> std::vector<T> deranked_mobius(std::vector<polynomial_t<T>>& ranked) { subset_transform::mobius(ranked); return internal::deranked<T>(ranked); } } // suisen::ranked_subset_transform template <typename T> std::vector<T> subset_convolution(const std::vector<T>& a, const std::vector<T>& b) { const int n = a.size(); auto ra = ranked_subset_transform::ranked_zeta(a), rb = ranked_subset_transform::ranked_zeta(b); for (int i = 0; i < n; ++i) ra[i] = ra[i].mul(rb[i], ra[i].size()); return ranked_subset_transform::deranked_mobius(ra); } } // namespace suisen #line 5 "library/math/set_power_series.hpp" namespace suisen { template <typename T> struct SetPowerSeries: public std::vector<T> { using base_type = std::vector<T>; using value_type = typename base_type::value_type; using size_type = typename base_type::size_type; using polynomial_type = ranked_subset_transform::polynomial_t<value_type>; using base_type::vector; SetPowerSeries(): SetPowerSeries(0) {} SetPowerSeries(size_type n): SetPowerSeries(n, value_type{ 0 }) {} SetPowerSeries(size_type n, const value_type& val): SetPowerSeries(std::vector<value_type>(1 << n, val)) {} SetPowerSeries(const base_type& a): SetPowerSeries(base_type(a)) {} SetPowerSeries(base_type&& a): base_type(std::move(a)) { const int n = this->size(); assert(n == (-n & n)); } SetPowerSeries(std::initializer_list<value_type> l): SetPowerSeries(base_type(l)) {} static SetPowerSeries one(int n) { SetPowerSeries f(n, value_type{ 0 }); f[0] = value_type{ 1 }; return f; } void set_cardinality(int n) { this->resize(1 << n, value_type{ 0 }); } int cardinality() const { return __builtin_ctz(this->size()); } SetPowerSeries cut_lower(size_type p) const { return SetPowerSeries(this->begin(), this->begin() + p); } SetPowerSeries cut_upper(size_type p) const { return SetPowerSeries(this->begin() + p, this->begin() + p + p); } void concat(const SetPowerSeries& upper) { assert(this->size() == upper.size()); this->insert(this->end(), upper.begin(), upper.end()); } SetPowerSeries operator+() const { return *this; } SetPowerSeries operator-() const { SetPowerSeries res(*this); for (auto& e : res) e = -e; return res; } SetPowerSeries& operator+=(const SetPowerSeries& g) { for (size_type i = 0; i < g.size(); ++i) (*this)[i] += g[i]; return *this; } SetPowerSeries& operator-=(const SetPowerSeries& g) { for (size_type i = 0; i < g.size(); ++i) (*this)[i] -= g[i]; return *this; } SetPowerSeries& operator*=(const SetPowerSeries& g) { return *this = (zeta() *= g).mobius_inplace(); } SetPowerSeries& operator*=(const value_type& c) { for (auto& e : *this) e *= c; return *this; } SetPowerSeries& operator/=(const value_type& c) { value_type inv_c = ::inv(c); for (auto& e : *this) e *= inv_c; return *this; } friend SetPowerSeries operator+(SetPowerSeries f, const SetPowerSeries& g) { f += g; return f; } friend SetPowerSeries operator-(SetPowerSeries f, const SetPowerSeries& g) { f -= g; return f; } friend SetPowerSeries operator*(SetPowerSeries f, const SetPowerSeries& g) { f *= g; return f; } friend SetPowerSeries operator*(SetPowerSeries f, const value_type& c) { f *= c; return f; } friend SetPowerSeries operator*(const value_type& c, SetPowerSeries f) { f *= c; return f; } friend SetPowerSeries operator/(SetPowerSeries f, const value_type& c) { f /= c; return f; } SetPowerSeries inv() { return zeta().inv_inplace().mobius_inplace(); } SetPowerSeries sqrt() { return zeta().sqrt_inplace().mobius_inplace(); } SetPowerSeries exp() { return zeta().exp_inplace().mobius_inplace(); } SetPowerSeries log() { return zeta().log_inplace().mobius_inplace(); } SetPowerSeries pow(long long k) { return zeta().pow_inplace(k).mobius_inplace(); } static SetPowerSeries polynomial_composite(std::vector<T> f, const SetPowerSeries& g) { const int n = g.cardinality(); std::vector<ZetaSPS> dp(n + 1); for (int k = 0; k <= n; ++k) { T eval_g0 = 0; for (int j = f.size(); j-- > 0;) eval_g0 = eval_g0 * g[0] + f[j]; dp[k] = ZetaSPS({ eval_g0 }); if (const int l = f.size()) { for (int j = 1; j < l; ++j) f[j - 1] = f[j] * j; f.pop_back(); } } for (int m = 1; m <= n; ++m) { ZetaSPS hi_g = g.cut_upper(1 << (m - 1)).zeta(); for (int k = 0; k <= n - m; ++k) { dp[k].concat(dp[k + 1] * hi_g); } dp.pop_back(); } return dp[0].mobius_inplace(); } struct ZetaSPS: public std::vector<polynomial_type> { using base_type = std::vector<polynomial_type>; using base_type::vector; ZetaSPS() = default; ZetaSPS(const SetPowerSeries<value_type>& f): base_type::vector(ranked_subset_transform::ranked_zeta(f)), _d(f.cardinality()) {} ZetaSPS operator+() const { return *this; } ZetaSPS operator-() const { ZetaSPS res(*this); for (auto& f : res) f = -f; return res; } friend ZetaSPS operator+(ZetaSPS f, const ZetaSPS& g) { f += g; return f; } friend ZetaSPS operator-(ZetaSPS f, const ZetaSPS& g) { f -= g; return f; } friend ZetaSPS operator*(ZetaSPS f, const ZetaSPS& g) { f *= g; return f; } friend ZetaSPS operator*(ZetaSPS f, const value_type& c) { f *= c; return f; } friend ZetaSPS operator*(const value_type& c, ZetaSPS f) { f *= c; return f; } friend ZetaSPS operator/(ZetaSPS f, const value_type& c) { f /= c; return f; } ZetaSPS& operator+=(const ZetaSPS& rhs) { assert(_d == rhs._d); for (int i = 0; i < 1 << _d; ++i) (*this)[i] += rhs[i]; return *this; } ZetaSPS& operator-=(const ZetaSPS& rhs) { assert(_d == rhs._d); for (int i = 0; i < 1 << _d; ++i) (*this)[i] -= rhs[i]; return *this; } ZetaSPS& operator*=(value_type c) { for (auto& f : *this) f *= c; return *this; } ZetaSPS& operator/=(value_type c) { value_type inv_c = ::inv(c); for (auto& f : *this) f *= inv_c; return *this; } ZetaSPS& operator*=(const ZetaSPS& rhs) { assert(_d == rhs._d); for (size_type i = 0; i < size_type(1) << _d; ++i) (*this)[i] = (*this)[i].mul(rhs[i], _d + 1); return *this; } ZetaSPS inv() const { auto f = ZetaSPS(*this).inv_inplace(); return f; } ZetaSPS sqrt() const { auto f = ZetaSPS(*this).sqrt_inplace(); return f; } ZetaSPS exp() const { auto f = ZetaSPS(*this).exp_inplace(); return f; } ZetaSPS log() const { auto f = ZetaSPS(*this).log_inplace(); return f; } ZetaSPS pow(long long k) const { auto f = ZetaSPS(*this).pow_inplace(k); return f; } ZetaSPS& inv_inplace() { for (auto& f : *this) f = f.inv(_d + 1); return *this; } ZetaSPS& sqrt_inplace() { for (auto& f : *this) f = f.sqrt(_d + 1); return *this; } ZetaSPS& exp_inplace() { for (auto& f : *this) f = f.exp(_d + 1); return *this; } ZetaSPS& log_inplace() { for (auto& f : *this) f = f.log(_d + 1); return *this; } ZetaSPS& pow_inplace(long long k) { for (auto& f : *this) f = f.pow(k, _d + 1); return *this; } void concat(const ZetaSPS& rhs) { assert(_d == rhs._d); this->reserve(1 << (_d + 1)); for (size_type i = 0; i < size_type(1) << _d; ++i) { this->push_back((rhs[i] << 1) += (*this)[i]); } ++_d; } SetPowerSeries<value_type> mobius_inplace() { return ranked_subset_transform::deranked_mobius<value_type>(*this); } SetPowerSeries<value_type> mobius() const { auto rf = ZetaSPS(*this); return ranked_subset_transform::deranked_mobius<value_type>(rf); } private: int _d; }; ZetaSPS zeta() const { return ZetaSPS(*this); } }; } // namespace suisen #line 10 "test/src/math/set_power_series/abc213_g.test.cpp" using namespace suisen; int main() { int n, m; std::cin >> n >> m; std::vector<int> c(1 << n, 0); for (int i = 0; i < m; ++i) { int u, v; std::cin >> u >> v; --u, --v; c[(1 << u) | (1 << v)] = 1; } suisen::subset_transform::zeta(c); suisen::SetPowerSeries<mint> g(n); for (int i = 0; i < 1 << n; ++i) { g[i] = mint(2).pow(c[i]); } assert(g.inv() * g == suisen::SetPowerSeries<mint>::one(n)); auto f = g.log(); auto h = f.exp(); // test of exp assert(g == h); std::vector<mint> ans(n, 0); int full = (1 << n) - 1; for (int i = 1; i < 1 << n; i += 2) { mint x = f[i] * g[full ^ i]; for (int j = 0; j < n; ++j) ans[j] += ((i >> j) & 1) * x; } for (int i = 1; i < n; ++i) { std::cout << ans[i].val() << std::endl; } return 0; }