cp-library-cpp

This documentation is automatically generated by online-judge-tools/verification-helper

View the Project on GitHub suisen-cp/cp-library-cpp

:heavy_check_mark: test/src/math/set_power_series/abc213_g.test.cpp

Depends on

Code

#define PROBLEM "https://atcoder.jp/contests/abc213/tasks/abc213_g"

#include <iostream>
#include <atcoder/modint>

using mint = atcoder::modint998244353;

#include "library/math/set_power_series.hpp"
#include "library/transform/subset.hpp"

using namespace suisen;

int main() {
    int n, m;
    std::cin >> n >> m;
    std::vector<int> c(1 << n, 0);
    for (int i = 0; i < m; ++i) {
        int u, v;
        std::cin >> u >> v;
        --u, --v;
        c[(1 << u) | (1 << v)] = 1;
    }
    suisen::subset_transform::zeta(c);
    suisen::SetPowerSeries<mint> g(n);
    for (int i = 0; i < 1 << n; ++i) {
        g[i] = mint(2).pow(c[i]);
    }

    assert(g.inv() * g == suisen::SetPowerSeries<mint>::one(n));

    auto f = g.log();
    auto h = f.exp();
    // test of exp
    assert(g == h);
    std::vector<mint> ans(n, 0);
    int full = (1 << n) - 1;
    for (int i = 1; i < 1 << n; i += 2) {
        mint x = f[i] * g[full ^ i];
        for (int j = 0; j < n; ++j) ans[j] += ((i >> j) & 1) * x;
    }
    for (int i = 1; i < n; ++i) {
        std::cout << ans[i].val() << std::endl;
    }
    return 0;
}
#line 1 "test/src/math/set_power_series/abc213_g.test.cpp"
#define PROBLEM "https://atcoder.jp/contests/abc213/tasks/abc213_g"

#include <iostream>
#include <atcoder/modint>

using mint = atcoder::modint998244353;

#line 1 "library/math/set_power_series.hpp"



#line 1 "library/convolution/subset_convolution.hpp"



#line 1 "library/polynomial/fps_naive.hpp"



#include <cassert>
#include <cmath>
#include <limits>
#include <type_traits>
#include <vector>

#line 1 "library/type_traits/type_traits.hpp"



#line 7 "library/type_traits/type_traits.hpp"

namespace suisen {
    template <typename ...Constraints> using constraints_t = std::enable_if_t<std::conjunction_v<Constraints...>, std::nullptr_t>;

    template <typename T, typename = std::nullptr_t> struct bitnum { static constexpr int value = 0; };
    template <typename T> struct bitnum<T, constraints_t<std::is_integral<T>>> { static constexpr int value = std::numeric_limits<std::make_unsigned_t<T>>::digits; };
    template <typename T> static constexpr int bitnum_v = bitnum<T>::value;
    template <typename T, size_t n> struct is_nbit { static constexpr bool value = bitnum_v<T> == n; };
    template <typename T, size_t n> static constexpr bool is_nbit_v = is_nbit<T, n>::value;

    template <typename T, typename = std::nullptr_t> struct safely_multipliable { using type = T; };
    template <typename T> struct safely_multipliable<T, constraints_t<std::is_signed<T>, is_nbit<T, 32>>> { using type = long long; };
    template <typename T> struct safely_multipliable<T, constraints_t<std::is_signed<T>, is_nbit<T, 64>>> { using type = __int128_t; };
    template <typename T> struct safely_multipliable<T, constraints_t<std::is_unsigned<T>, is_nbit<T, 32>>> { using type = unsigned long long; };
    template <typename T> struct safely_multipliable<T, constraints_t<std::is_unsigned<T>, is_nbit<T, 64>>> { using type = __uint128_t; };
    template <typename T> using safely_multipliable_t = typename safely_multipliable<T>::type;

    template <typename T, typename = void> struct rec_value_type { using type = T; };
    template <typename T> struct rec_value_type<T, std::void_t<typename T::value_type>> {
        using type = typename rec_value_type<typename T::value_type>::type;
    };
    template <typename T> using rec_value_type_t = typename rec_value_type<T>::type;

    template <typename T> class is_iterable {
        template <typename T_> static auto test(T_ e) -> decltype(e.begin(), e.end(), std::true_type{});
        static std::false_type test(...);
    public:
        static constexpr bool value = decltype(test(std::declval<T>()))::value;
    };
    template <typename T> static constexpr bool is_iterable_v = is_iterable<T>::value;
    template <typename T> class is_writable {
        template <typename T_> static auto test(T_ e) -> decltype(std::declval<std::ostream&>() << e, std::true_type{});
        static std::false_type test(...);
    public:
        static constexpr bool value = decltype(test(std::declval<T>()))::value;
    };
    template <typename T> static constexpr bool is_writable_v = is_writable<T>::value;
    template <typename T> class is_readable {
        template <typename T_> static auto test(T_ e) -> decltype(std::declval<std::istream&>() >> e, std::true_type{});
        static std::false_type test(...);
    public:
        static constexpr bool value = decltype(test(std::declval<T>()))::value;
    };
    template <typename T> static constexpr bool is_readable_v = is_readable<T>::value;
} // namespace suisen

#line 11 "library/polynomial/fps_naive.hpp"

#line 1 "library/math/modint_extension.hpp"



#line 5 "library/math/modint_extension.hpp"
#include <optional>

/**
 * refernce: https://37zigen.com/tonelli-shanks-algorithm/
 * calculates x s.t. x^2 = a mod p in O((log p)^2).
 */
template <typename mint>
std::optional<mint> safe_sqrt(mint a) {
    static int p = mint::mod();
    if (a == 0) return std::make_optional(0);
    if (p == 2) return std::make_optional(a);
    if (a.pow((p - 1) / 2) != 1) return std::nullopt;
    mint b = 1;
    while (b.pow((p - 1) / 2) == 1) ++b;
    static int tlz = __builtin_ctz(p - 1), q = (p - 1) >> tlz;
    mint x = a.pow((q + 1) / 2);
    b = b.pow(q);
    for (int shift = 2; x * x != a; ++shift) {
        mint e = a.inv() * x * x;
        if (e.pow(1 << (tlz - shift)) != 1) x *= b;
        b *= b;
    }
    return std::make_optional(x);
}

/**
 * calculates x s.t. x^2 = a mod p in O((log p)^2).
 * if not exists, raises runtime error.
 */
template <typename mint>
auto sqrt(mint a) -> decltype(mint::mod(), mint()) {
    return *safe_sqrt(a);
}
template <typename mint>
auto log(mint a) -> decltype(mint::mod(), mint()) {
    assert(a == 1);
    return 0;
}
template <typename mint>
auto exp(mint a) -> decltype(mint::mod(), mint()) {
    assert(a == 0);
    return 1;
}
template <typename mint, typename T>
auto pow(mint a, T b) -> decltype(mint::mod(), mint()) {
    return a.pow(b);
}
template <typename mint>
auto inv(mint a) -> decltype(mint::mod(), mint()) {
    return a.inv();
}


#line 1 "library/math/inv_mods.hpp"



#line 5 "library/math/inv_mods.hpp"

namespace suisen {
    template <typename mint>
    class inv_mods {
    public:
        inv_mods() = default;
        inv_mods(int n) { ensure(n); }
        const mint& operator[](int i) const {
            ensure(i);
            return invs[i];
        }
        static void ensure(int n) {
            int sz = invs.size();
            if (sz < 2) invs = { 0, 1 }, sz = 2;
            if (sz < n + 1) {
                invs.resize(n + 1);
                for (int i = sz; i <= n; ++i) invs[i] = mint(mod - mod / i) * invs[mod % i];
            }
        }
    private:
        static std::vector<mint> invs;
        static constexpr int mod = mint::mod();
    };
    template <typename mint>
    std::vector<mint> inv_mods<mint>::invs{};

    template <typename mint>
    std::vector<mint> get_invs(const std::vector<mint>& vs) {
        const int n = vs.size();

        mint p = 1;
        for (auto& e : vs) {
            p *= e;
            assert(e != 0);
        }
        mint ip = p.inv();

        std::vector<mint> rp(n + 1);
        rp[n] = 1;
        for (int i = n - 1; i >= 0; --i) {
            rp[i] = rp[i + 1] * vs[i];
        }
        std::vector<mint> res(n);
        for (int i = 0; i < n; ++i) {
            res[i] = ip * rp[i + 1];
            ip *= vs[i];
        }
        return res;
    }
}


#line 14 "library/polynomial/fps_naive.hpp"

namespace suisen {
    template <typename T>
    struct FPSNaive : std::vector<T> {
        static inline int MAX_SIZE = std::numeric_limits<int>::max() / 2;

        using value_type = T;
        using element_type = rec_value_type_t<T>;
        using std::vector<value_type>::vector;

        FPSNaive(const std::initializer_list<value_type> l) : std::vector<value_type>::vector(l) {}
        FPSNaive(const std::vector<value_type>& v) : std::vector<value_type>::vector(v) {}

        static void set_max_size(int n) {
            FPSNaive<T>::MAX_SIZE = n;
        }

        const value_type operator[](int n) const {
            return n <= deg() ? unsafe_get(n) : value_type{ 0 };
        }
        value_type& operator[](int n) {
            return ensure_deg(n), unsafe_get(n);
        }

        int size() const {
            return std::vector<value_type>::size();
        }
        int deg() const {
            return size() - 1;
        }
        int normalize() {
            while (size() and this->back() == value_type{ 0 }) this->pop_back();
            return deg();
        }
        FPSNaive& cut_inplace(int n) {
            if (size() > n) this->resize(std::max(0, n));
            return *this;
        }
        FPSNaive cut(int n) const {
            FPSNaive f = FPSNaive(*this).cut_inplace(n);
            return f;
        }

        FPSNaive operator+() const {
            return FPSNaive(*this);
        }
        FPSNaive operator-() const {
            FPSNaive f(*this);
            for (auto& e : f) e = -e;
            return f;
        }
        FPSNaive& operator++() { return ++(*this)[0], * this; }
        FPSNaive& operator--() { return --(*this)[0], * this; }
        FPSNaive& operator+=(const value_type x) { return (*this)[0] += x, *this; }
        FPSNaive& operator-=(const value_type x) { return (*this)[0] -= x, *this; }
        FPSNaive& operator+=(const FPSNaive& g) {
            ensure_deg(g.deg());
            for (int i = 0; i <= g.deg(); ++i) unsafe_get(i) += g.unsafe_get(i);
            return *this;
        }
        FPSNaive& operator-=(const FPSNaive& g) {
            ensure_deg(g.deg());
            for (int i = 0; i <= g.deg(); ++i) unsafe_get(i) -= g.unsafe_get(i);
            return *this;
        }
        FPSNaive& operator*=(const FPSNaive& g) { return *this = *this * g; }
        FPSNaive& operator*=(const value_type x) {
            for (auto& e : *this) e *= x;
            return *this;
        }
        FPSNaive& operator/=(const FPSNaive& g) { return *this = *this / g; }
        FPSNaive& operator%=(const FPSNaive& g) { return *this = *this % g; }
        FPSNaive& operator<<=(const int shamt) {
            this->insert(this->begin(), shamt, value_type{ 0 });
            return *this;
        }
        FPSNaive& operator>>=(const int shamt) {
            if (shamt > size()) this->clear();
            else this->erase(this->begin(), this->begin() + shamt);
            return *this;
        }

        friend FPSNaive operator+(FPSNaive f, const FPSNaive& g) { f += g; return f; }
        friend FPSNaive operator+(FPSNaive f, const value_type& x) { f += x; return f; }
        friend FPSNaive operator-(FPSNaive f, const FPSNaive& g) { f -= g; return f; }
        friend FPSNaive operator-(FPSNaive f, const value_type& x) { f -= x; return f; }
        friend FPSNaive operator*(const FPSNaive& f, const FPSNaive& g) {
            if (f.empty() or g.empty()) return FPSNaive{};
            const int n = f.size(), m = g.size();
            FPSNaive h(std::min(MAX_SIZE, n + m - 1));
            for (int i = 0; i < n; ++i) for (int j = 0; j < m; ++j) {
                if (i + j >= MAX_SIZE) break;
                h.unsafe_get(i + j) += f.unsafe_get(i) * g.unsafe_get(j);
            }
            return h;
        }
        friend FPSNaive operator*(FPSNaive f, const value_type& x) { f *= x; return f; }
        friend FPSNaive operator/(FPSNaive f, const FPSNaive& g) { return std::move(f.div_mod(g).first); }
        friend FPSNaive operator%(FPSNaive f, const FPSNaive& g) { return std::move(f.div_mod(g).second); }
        friend FPSNaive operator*(const value_type x, FPSNaive f) { f *= x; return f; }
        friend FPSNaive operator<<(FPSNaive f, const int shamt) { f <<= shamt; return f; }
        friend FPSNaive operator>>(FPSNaive f, const int shamt) { f >>= shamt; return f; }

        std::pair<FPSNaive, FPSNaive> div_mod(FPSNaive g) const {
            FPSNaive f = *this;
            const int fd = f.normalize(), gd = g.normalize();
            assert(gd >= 0);
            if (fd < gd) return { FPSNaive{}, f };
            if (gd == 0) return { f *= g.unsafe_get(0).inv(), FPSNaive{} };
            const int k = f.deg() - gd;
            value_type head_inv = g.unsafe_get(gd).inv();
            FPSNaive q(k + 1);
            for (int i = k; i >= 0; --i) {
                value_type div = f.unsafe_get(i + gd) * head_inv;
                q.unsafe_get(i) = div;
                for (int j = 0; j <= gd; ++j) f.unsafe_get(i + j) -= div * g.unsafe_get(j);
            }
            f.cut_inplace(gd);
            f.normalize();
            return { q, f };
        }

        friend bool operator==(const FPSNaive& f, const FPSNaive& g) {
            const int n = f.size(), m = g.size();
            if (n < m) return g == f;
            for (int i = 0; i < m; ++i) if (f.unsafe_get(i) != g.unsafe_get(i)) return false;
            for (int i = m; i < n; ++i) if (f.unsafe_get(i) != 0) return false;
            return true;
        }
        friend bool operator!=(const FPSNaive& f, const FPSNaive& g) {
            return not (f == g);
        }

        FPSNaive mul(const FPSNaive& g, int n = -1) const {
            if (n < 0) n = size();
            if (this->empty() or g.empty()) return FPSNaive{};
            const int m = size(), k = g.size();
            FPSNaive h(std::min(n, m + k - 1));
            for (int i = 0; i < m; ++i) {
                for (int j = 0, jr = std::min(k, n - i); j < jr; ++j) {
                    h.unsafe_get(i + j) += unsafe_get(i) * g.unsafe_get(j);
                }
            }
            return h;
        }
        FPSNaive diff() const {
            if (this->empty()) return {};
            FPSNaive g(size() - 1);
            for (int i = 1; i <= deg(); ++i) g.unsafe_get(i - 1) = unsafe_get(i) * i;
            return g;
        }
        FPSNaive intg() const {
            const int n = size();
            FPSNaive g(n + 1);
            for (int i = 0; i < n; ++i) g.unsafe_get(i + 1) = unsafe_get(i) * invs[i + 1];
            if (g.deg() > MAX_SIZE) g.cut_inplace(MAX_SIZE);
            return g;
        }
        FPSNaive inv(int n = -1) const {
            if (n < 0) n = size();
            FPSNaive g(n);
            const value_type inv_f0 = ::inv(unsafe_get(0));
            g.unsafe_get(0) = inv_f0;
            for (int i = 1; i < n; ++i) {
                for (int j = 1; j <= i; ++j) g.unsafe_get(i) -= g.unsafe_get(i - j) * (*this)[j];
                g.unsafe_get(i) *= inv_f0;
            }
            return g;
        }
        FPSNaive exp(int n = -1) const {
            if (n < 0) n = size();
            assert(unsafe_get(0) == value_type{ 0 });
            FPSNaive g(n);
            g.unsafe_get(0) = value_type{ 1 };
            for (int i = 1; i < n; ++i) {
                for (int j = 1; j <= i; ++j) g.unsafe_get(i) += j * g.unsafe_get(i - j) * (*this)[j];
                g.unsafe_get(i) *= invs[i];
            }
            return g;
        }
        FPSNaive log(int n = -1) const {
            if (n < 0) n = size();
            assert(unsafe_get(0) == value_type{ 1 });
            FPSNaive g(n);
            g.unsafe_get(0) = value_type{ 0 };
            for (int i = 1; i < n; ++i) {
                g.unsafe_get(i) = i * (*this)[i];
                for (int j = 1; j < i; ++j) g.unsafe_get(i) -= (i - j) * g.unsafe_get(i - j) * (*this)[j];
                g.unsafe_get(i) *= invs[i];
            }
            return g;
        }
        FPSNaive pow(const long long k, int n = -1) const {
            if (n < 0) n = size();
            if (k == 0) {
                FPSNaive res(n);
                res[0] = 1;
                return res;
            }
            int z = 0;
            while (z < size() and unsafe_get(z) == value_type{ 0 }) ++z;
            if (z == size() or z > (n - 1) / k) return FPSNaive(n, 0);
            const int m = n - z * k;

            FPSNaive g(m);
            const value_type inv_f0 = ::inv(unsafe_get(z));
            g.unsafe_get(0) = unsafe_get(z).pow(k);
            for (int i = 1; i < m; ++i) {
                for (int j = 1; j <= i; ++j) g.unsafe_get(i) += (element_type{ k } *j - (i - j)) * g.unsafe_get(i - j) * (*this)[z + j];
                g.unsafe_get(i) *= inv_f0 * invs[i];
            }
            g <<= z * k;
            return g;
        }

        std::optional<FPSNaive> safe_sqrt(int n = -1) const {
            if (n < 0) n = size();
            int dl = 0;
            while (dl < size() and unsafe_get(dl) == value_type{ 0 }) ++dl;
            if (dl == size()) return FPSNaive(n, 0);
            if (dl & 1) return std::nullopt;

            const int m = n - dl / 2;

            FPSNaive g(m);
            auto opt_g0 = ::safe_sqrt((*this)[dl]);
            if (not opt_g0.has_value()) return std::nullopt;
            g.unsafe_get(0) = *opt_g0;
            value_type inv_2g0 = ::inv(2 * g.unsafe_get(0));
            for (int i = 1; i < m; ++i) {
                g.unsafe_get(i) = (*this)[dl + i];
                for (int j = 1; j < i; ++j) g.unsafe_get(i) -= g.unsafe_get(j) * g.unsafe_get(i - j);
                g.unsafe_get(i) *= inv_2g0;
            }
            g <<= dl / 2;
            return g;
        }
        FPSNaive sqrt(int n = -1) const {
            if (n < 0) n = size();
            return *safe_sqrt(n);
        }

        value_type eval(value_type x) const {
            value_type y = 0;
            for (int i = size() - 1; i >= 0; --i) y = y * x + unsafe_get(i);
            return y;
        }

    private:
        static inline inv_mods<element_type> invs;

        void ensure_deg(int d) {
            if (deg() < d) this->resize(d + 1, value_type{ 0 });
        }
        const value_type& unsafe_get(int i) const {
            return std::vector<value_type>::operator[](i);
        }
        value_type& unsafe_get(int i) {
            return std::vector<value_type>::operator[](i);
        }
    };
} // namespace suisen

template <typename mint>
suisen::FPSNaive<mint> sqrt(suisen::FPSNaive<mint> a) {
    return a.sqrt();
}
template <typename mint>
suisen::FPSNaive<mint> log(suisen::FPSNaive<mint> a) {
    return a.log();
}
template <typename mint>
suisen::FPSNaive<mint> exp(suisen::FPSNaive<mint> a) {
    return a.exp();
}
template <typename mint, typename T>
suisen::FPSNaive<mint> pow(suisen::FPSNaive<mint> a, T b) {
    return a.pow(b);
}
template <typename mint>
suisen::FPSNaive<mint> inv(suisen::FPSNaive<mint> a) {
    return a.inv();
}


#line 5 "library/convolution/subset_convolution.hpp"

#line 1 "library/transform/subset.hpp"



#line 1 "library/transform/kronecker_power.hpp"



#line 5 "library/transform/kronecker_power.hpp"
#include <utility>
#line 7 "library/transform/kronecker_power.hpp"

#line 1 "library/util/default_operator.hpp"



namespace suisen {
    namespace default_operator {
        template <typename T>
        auto zero() -> decltype(T { 0 }) { return T { 0 }; }
        template <typename T>
        auto one()  -> decltype(T { 1 }) { return T { 1 }; }
        template <typename T>
        auto add(const T &x, const T &y) -> decltype(x + y) { return x + y; }
        template <typename T>
        auto sub(const T &x, const T &y) -> decltype(x - y) { return x - y; }
        template <typename T>
        auto mul(const T &x, const T &y) -> decltype(x * y) { return x * y; }
        template <typename T>
        auto div(const T &x, const T &y) -> decltype(x / y) { return x / y; }
        template <typename T>
        auto mod(const T &x, const T &y) -> decltype(x % y) { return x % y; }
        template <typename T>
        auto neg(const T &x) -> decltype(-x) { return -x; }
        template <typename T>
        auto inv(const T &x) -> decltype(one<T>() / x)  { return one<T>() / x; }
    } // default_operator
    namespace default_operator_noref {
        template <typename T>
        auto zero() -> decltype(T { 0 }) { return T { 0 }; }
        template <typename T>
        auto one()  -> decltype(T { 1 }) { return T { 1 }; }
        template <typename T>
        auto add(T x, T y) -> decltype(x + y) { return x + y; }
        template <typename T>
        auto sub(T x, T y) -> decltype(x - y) { return x - y; }
        template <typename T>
        auto mul(T x, T y) -> decltype(x * y) { return x * y; }
        template <typename T>
        auto div(T x, T y) -> decltype(x / y) { return x / y; }
        template <typename T>
        auto mod(T x, T y) -> decltype(x % y) { return x % y; }
        template <typename T>
        auto neg(T x) -> decltype(-x) { return -x; }
        template <typename T>
        auto inv(T x) -> decltype(one<T>() / x)  { return one<T>() / x; }
    } // default_operator
} // namespace suisen


#line 9 "library/transform/kronecker_power.hpp"

namespace suisen {
    namespace kronecker_power_transform {
        namespace internal {
            template <typename UnitTransform, typename ReferenceGetter, std::size_t... Seq>
            void unit_transform(UnitTransform transform, ReferenceGetter ref_getter, std::index_sequence<Seq...>) {
                transform(ref_getter(Seq)...);
            }
        }

        template <typename T, std::size_t D, auto unit_transform>
        void kronecker_power_transform(std::vector<T> &x) {
            const std::size_t n = x.size();
            for (std::size_t block = 1; block < n; block *= D) {
                for (std::size_t l = 0; l < n; l += D * block) {
                    for (std::size_t offset = l; offset < l + block; ++offset) {
                        const auto ref_getter = [&](std::size_t i) -> T& { return x[offset + i * block]; };
                        internal::unit_transform(unit_transform, ref_getter, std::make_index_sequence<D>());
                    }
                }
            }
        }

        template <typename T, typename UnitTransform>
        void kronecker_power_transform(std::vector<T> &x, const std::size_t D, UnitTransform unit_transform) {
            const std::size_t n = x.size();
            std::vector<T> work(D);
            for (std::size_t block = 1; block < n; block *= D) {
                for (std::size_t l = 0; l < n; l += D * block) {
                    for (std::size_t offset = l; offset < l + block; ++offset) {
                        for (std::size_t i = 0; i < D; ++i) work[i] = x[offset + i * block];
                        unit_transform(work);
                        for (std::size_t i = 0; i < D; ++i) x[offset + i * block] = work[i];
                    }
                }
            }
        }

        template <typename T, auto e = default_operator::zero<T>, auto add = default_operator::add<T>, auto mul = default_operator::mul<T>>
        auto kronecker_power_transform(std::vector<T> &x, const std::vector<std::vector<T>> &A) -> decltype(e(), add(std::declval<T>(), std::declval<T>()), mul(std::declval<T>(), std::declval<T>()), void()) {
            const std::size_t D = A.size();
            assert(D == A[0].size());
            auto unit_transform = [&](std::vector<T> &x) {
                std::vector<T> y(D, e());
                for (std::size_t i = 0; i < D; ++i) for (std::size_t j = 0; j < D; ++j) {
                    y[i] = add(y[i], mul(A[i][j], x[j]));
                }
                x.swap(y);
            };
            kronecker_power_transform<T>(x, D, unit_transform);
        }
    }
} // namespace suisen



#line 5 "library/transform/subset.hpp"

namespace suisen::subset_transform {
    namespace internal {
        template <typename T, auto add = default_operator::add<T>>
        void zeta_unit_transform(T &x0, T &x1) {
                                // 1, 0
            x1 = add(x1, x0);   // 1, 1
        }
        template <typename T, auto sub = default_operator::sub<T>>
        void mobius_unit_transform(T &x0, T &x1) {
                                //  1, 0
            x1 = sub(x1, x0);   // -1, 1
        }
    } // namespace internal

    using kronecker_power_transform::kronecker_power_transform;

    template <typename T, auto add = default_operator::add<T>>
    void zeta(std::vector<T> &a) {
        kronecker_power_transform<T, 2, internal::zeta_unit_transform<T, add>>(a);
    }
    template <typename T, auto sub = default_operator::sub<T>>
    void mobius(std::vector<T> &a) {
        kronecker_power_transform<T, 2, internal::mobius_unit_transform<T, sub>>(a);
    }
} // namespace suisen::subset_transform


#line 7 "library/convolution/subset_convolution.hpp"

namespace suisen {
    namespace ranked_subset_transform {
        template <typename T>
        using polynomial_t = FPSNaive<T>;

        namespace internal {
            template <typename T>
            std::vector<polynomial_t<T>> ranked(const std::vector<T>& a) {
                const int n = a.size();
                assert((-n & n) == n);
                std::vector fs(n, polynomial_t<T>(__builtin_ctz(n) + 1, T{ 0 }));
                for (int i = 0; i < n; ++i) fs[i][__builtin_popcount(i)] = a[i];
                return fs;
            }
            template <typename T>
            std::vector<T> deranked(const std::vector<polynomial_t<T>>& polys) {
                const int n = polys.size();
                assert((-n & n) == n);
                std::vector<T> a(n);
                for (int i = 0; i < n; ++i) a[i] = polys[i][__builtin_popcount(i)];
                return a;
            }
        } // suisen::ranked_subset_transform::internal

        template <typename T>
        std::vector<polynomial_t<T>> ranked_zeta(const std::vector<T>& a) {
            std::vector<polynomial_t<T>> ranked = internal::ranked<T>(a);
            subset_transform::zeta(ranked);
            return ranked;
        }
        template <typename T>
        std::vector<T> deranked_mobius(std::vector<polynomial_t<T>>& ranked) {
            subset_transform::mobius(ranked);
            return internal::deranked<T>(ranked);
        }
    } // suisen::ranked_subset_transform

    template <typename T>
    std::vector<T> subset_convolution(const std::vector<T>& a, const std::vector<T>& b) {
        const int n = a.size();
        auto ra = ranked_subset_transform::ranked_zeta(a), rb = ranked_subset_transform::ranked_zeta(b);
        for (int i = 0; i < n; ++i) ra[i] = ra[i].mul(rb[i], ra[i].size());
        return ranked_subset_transform::deranked_mobius(ra);
    }
} // namespace suisen


#line 5 "library/math/set_power_series.hpp"

namespace suisen {
    template <typename T>
    struct SetPowerSeries: public std::vector<T> {
        using base_type = std::vector<T>;
        using value_type = typename base_type::value_type;
        using size_type = typename base_type::size_type;

        using polynomial_type = ranked_subset_transform::polynomial_t<value_type>;

        using base_type::vector;

        SetPowerSeries(): SetPowerSeries(0) {}
        SetPowerSeries(size_type n): SetPowerSeries(n, value_type{ 0 }) {}
        SetPowerSeries(size_type n, const value_type& val): SetPowerSeries(std::vector<value_type>(1 << n, val)) {}
        SetPowerSeries(const base_type& a): SetPowerSeries(base_type(a)) {}
        SetPowerSeries(base_type&& a): base_type(std::move(a)) {
            const int n = this->size();
            assert(n == (-n & n));
        }
        SetPowerSeries(std::initializer_list<value_type> l): SetPowerSeries(base_type(l)) {}

        static SetPowerSeries one(int n) {
            SetPowerSeries f(n, value_type{ 0 });
            f[0] = value_type{ 1 };
            return f;
        }

        void set_cardinality(int n) {
            this->resize(1 << n, value_type{ 0 });
        }
        int cardinality() const {
            return __builtin_ctz(this->size());
        }

        SetPowerSeries cut_lower(size_type p) const {
            return SetPowerSeries(this->begin(), this->begin() + p);
        }
        SetPowerSeries cut_upper(size_type p) const {
            return SetPowerSeries(this->begin() + p, this->begin() + p + p);
        }

        void concat(const SetPowerSeries& upper) {
            assert(this->size() == upper.size());
            this->insert(this->end(), upper.begin(), upper.end());
        }

        SetPowerSeries operator+() const {
            return *this;
        }
        SetPowerSeries operator-() const {
            SetPowerSeries res(*this);
            for (auto& e : res) e = -e;
            return res;
        }
        SetPowerSeries& operator+=(const SetPowerSeries& g) {
            for (size_type i = 0; i < g.size(); ++i) (*this)[i] += g[i];
            return *this;
        }
        SetPowerSeries& operator-=(const SetPowerSeries& g) {
            for (size_type i = 0; i < g.size(); ++i) (*this)[i] -= g[i];
            return *this;
        }
        SetPowerSeries& operator*=(const SetPowerSeries& g) {
            return *this = (zeta() *= g).mobius_inplace();
        }
        SetPowerSeries& operator*=(const value_type& c) {
            for (auto& e : *this) e *= c;
            return *this;
        }
        SetPowerSeries& operator/=(const value_type& c) {
            value_type inv_c = ::inv(c);
            for (auto& e : *this) e *= inv_c;
            return *this;
        }
        friend SetPowerSeries operator+(SetPowerSeries f, const SetPowerSeries& g) { f += g; return f; }
        friend SetPowerSeries operator-(SetPowerSeries f, const SetPowerSeries& g) { f -= g; return f; }
        friend SetPowerSeries operator*(SetPowerSeries f, const SetPowerSeries& g) { f *= g; return f; }
        friend SetPowerSeries operator*(SetPowerSeries f, const value_type& c) { f *= c; return f; }
        friend SetPowerSeries operator*(const value_type& c, SetPowerSeries f) { f *= c; return f; }
        friend SetPowerSeries operator/(SetPowerSeries f, const value_type& c) { f /= c; return f; }

        SetPowerSeries inv() {
            return zeta().inv_inplace().mobius_inplace();
        }
        SetPowerSeries sqrt() {
            return zeta().sqrt_inplace().mobius_inplace();
        }
        SetPowerSeries exp() {
            return zeta().exp_inplace().mobius_inplace();
        }
        SetPowerSeries log() {
            return zeta().log_inplace().mobius_inplace();
        }
        SetPowerSeries pow(long long k) {
            return zeta().pow_inplace(k).mobius_inplace();
        }

        static SetPowerSeries polynomial_composite(std::vector<T> f, const SetPowerSeries& g) {
            const int n = g.cardinality();
            std::vector<ZetaSPS> dp(n + 1);
            for (int k = 0; k <= n; ++k) {
                T eval_g0 = 0;
                for (int j = f.size(); j-- > 0;) eval_g0 = eval_g0 * g[0] + f[j];
                dp[k] = ZetaSPS({ eval_g0 });

                if (const int l = f.size()) {
                    for (int j = 1; j < l; ++j) f[j - 1] = f[j] * j;
                    f.pop_back();
                }
            }
            for (int m = 1; m <= n; ++m) {
                ZetaSPS hi_g = g.cut_upper(1 << (m - 1)).zeta();
                for (int k = 0; k <= n - m; ++k) {
                    dp[k].concat(dp[k + 1] * hi_g);
                }
                dp.pop_back();
            }
            return dp[0].mobius_inplace();
        }

        struct ZetaSPS: public std::vector<polynomial_type> {
            using base_type = std::vector<polynomial_type>;
            using base_type::vector;
            ZetaSPS() = default;
            ZetaSPS(const SetPowerSeries<value_type>& f): base_type::vector(ranked_subset_transform::ranked_zeta(f)), _d(f.cardinality()) {}

            ZetaSPS operator+() const {
                return *this;
            }
            ZetaSPS operator-() const {
                ZetaSPS res(*this);
                for (auto& f : res) f = -f;
                return res;
            }
            friend ZetaSPS operator+(ZetaSPS f, const ZetaSPS& g) { f += g; return f; }
            friend ZetaSPS operator-(ZetaSPS f, const ZetaSPS& g) { f -= g; return f; }
            friend ZetaSPS operator*(ZetaSPS f, const ZetaSPS& g) { f *= g; return f; }
            friend ZetaSPS operator*(ZetaSPS f, const value_type& c) { f *= c; return f; }
            friend ZetaSPS operator*(const value_type& c, ZetaSPS f) { f *= c; return f; }
            friend ZetaSPS operator/(ZetaSPS f, const value_type& c) { f /= c; return f; }

            ZetaSPS& operator+=(const ZetaSPS& rhs) {
                assert(_d == rhs._d);
                for (int i = 0; i < 1 << _d; ++i) (*this)[i] += rhs[i];
                return *this;
            }
            ZetaSPS& operator-=(const ZetaSPS& rhs) {
                assert(_d == rhs._d);
                for (int i = 0; i < 1 << _d; ++i) (*this)[i] -= rhs[i];
                return *this;
            }
            ZetaSPS& operator*=(value_type c) {
                for (auto& f : *this) f *= c;
                return *this;
            }
            ZetaSPS& operator/=(value_type c) {
                value_type inv_c = ::inv(c);
                for (auto& f : *this) f *= inv_c;
                return *this;
            }
            ZetaSPS& operator*=(const ZetaSPS& rhs) {
                assert(_d == rhs._d);
                for (size_type i = 0; i < size_type(1) << _d; ++i) (*this)[i] = (*this)[i].mul(rhs[i], _d + 1);
                return *this;
            }
            ZetaSPS inv()  const { auto f = ZetaSPS(*this).inv_inplace();  return f; }
            ZetaSPS sqrt() const { auto f = ZetaSPS(*this).sqrt_inplace(); return f; }
            ZetaSPS exp()  const { auto f = ZetaSPS(*this).exp_inplace();  return f; }
            ZetaSPS log()  const { auto f = ZetaSPS(*this).log_inplace();  return f; }
            ZetaSPS pow(long long k) const { auto f = ZetaSPS(*this).pow_inplace(k); return f; }
            ZetaSPS& inv_inplace() {
                for (auto& f : *this) f = f.inv(_d + 1);
                return *this;
            }
            ZetaSPS& sqrt_inplace() {
                for (auto& f : *this) f = f.sqrt(_d + 1);
                return *this;
            }
            ZetaSPS& exp_inplace() {
                for (auto& f : *this) f = f.exp(_d + 1);
                return *this;
            }
            ZetaSPS& log_inplace() {
                for (auto& f : *this) f = f.log(_d + 1);
                return *this;
            }
            ZetaSPS& pow_inplace(long long k) {
                for (auto& f : *this) f = f.pow(k, _d + 1);
                return *this;
            }
            void concat(const ZetaSPS& rhs) {
                assert(_d == rhs._d);
                this->reserve(1 << (_d + 1));
                for (size_type i = 0; i < size_type(1) << _d; ++i) {
                    this->push_back((rhs[i] << 1) += (*this)[i]);
                }
                ++_d;
            }
            SetPowerSeries<value_type> mobius_inplace() {
                return ranked_subset_transform::deranked_mobius<value_type>(*this);
            }
            SetPowerSeries<value_type> mobius() const {
                auto rf = ZetaSPS(*this);
                return ranked_subset_transform::deranked_mobius<value_type>(rf);
            }
        private:
            int _d;
        };

        ZetaSPS zeta() const {
            return ZetaSPS(*this);
        }
    };
} // namespace suisen


#line 10 "test/src/math/set_power_series/abc213_g.test.cpp"

using namespace suisen;

int main() {
    int n, m;
    std::cin >> n >> m;
    std::vector<int> c(1 << n, 0);
    for (int i = 0; i < m; ++i) {
        int u, v;
        std::cin >> u >> v;
        --u, --v;
        c[(1 << u) | (1 << v)] = 1;
    }
    suisen::subset_transform::zeta(c);
    suisen::SetPowerSeries<mint> g(n);
    for (int i = 0; i < 1 << n; ++i) {
        g[i] = mint(2).pow(c[i]);
    }

    assert(g.inv() * g == suisen::SetPowerSeries<mint>::one(n));

    auto f = g.log();
    auto h = f.exp();
    // test of exp
    assert(g == h);
    std::vector<mint> ans(n, 0);
    int full = (1 << n) - 1;
    for (int i = 1; i < 1 << n; i += 2) {
        mint x = f[i] * g[full ^ i];
        for (int j = 0; j < n; ++j) ans[j] += ((i >> j) & 1) * x;
    }
    for (int i = 1; i < n; ++i) {
        std::cout << ans[i].val() << std::endl;
    }
    return 0;
}
Back to top page