This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://judge.yosupo.jp/problem/range_set_range_composite"
#include "library/range_query/range_set_range_composite.hpp"
#include <iostream>
#include <atcoder/modint>
using mint = atcoder::modint998244353;
using affine = std::pair<mint, mint>;
affine op(affine f, affine g) {
return { g.first * f.first, g.first * f.second + g.second };
}
affine e() {
return affine{ 1, 0 };
}
int main() {
std::ios::sync_with_stdio(false);
std::cin.tie(nullptr);
int n, q;
std::cin >> n >> q;
std::vector<affine> init(n);
for (int i = 0; i < n; ++i) {
int a, b;
std::cin >> a >> b;
init[i] = { a, b };
}
suisen::RangeSetRangeComposite<affine, op, e> seg(init);
while (q--) {
int query_type;
std::cin >> query_type;
if (query_type == 0) {
int l, r, c, d;
std::cin >> l >> r >> c >> d;
seg.set(l, r, affine{ c, d });
} else {
int l, r, x;
std::cin >> l >> r >> x;
auto [c, d] = seg.prod(l, r);
std::cout << (c * x + d).val() << '\n';
}
}
}
#line 1 "test/src/range_query/range_set_range_composite/range_set_range_composite.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/range_set_range_composite"
#line 1 "library/range_query/range_set_range_composite.hpp"
#line 1 "library/datastructure/fenwick_tree/fenwick_tree_set.hpp"
#include <array>
#include <cassert>
#include <cstdint>
#include <numeric>
#include <vector>
#ifdef _MSC_VER
# include <intrin.h>
#else
# include <x86intrin.h>
#endif
namespace suisen {
struct fenwick_tree_set {
private:
template <typename T>
struct is_container {
template <typename T2>
static auto test(T2 t) -> decltype(++t.begin() != t.end(), *t.begin(), std::true_type{});
static std::false_type test(...);
public:
static constexpr bool value = decltype(test(std::declval<T>()))::value;
};
static constexpr int WORD = 64, MASK_WORD = 63, LOG_WORD = 6;
static constexpr int SEARCH_WIDTH = 1;
public:
fenwick_tree_set() : fenwick_tree_set(0) {}
// Construct (an empty / a full) set and set the universe as {0,1,...,n-1}
explicit fenwick_tree_set(int n, bool fullset = false): _n(n), _wn(std::max((_n + (WORD - 1)) >> LOG_WORD, 1)), _lg(top_setbit(_wn)), _siz(0), _d(_wn + 1), _bs(_wn) {
if (fullset) {
std::vector<int> values(n);
std::iota(values.begin(), values.end(), 0);
construct_from_values(values);
}
}
// Construct a set containing the values in `values`.
template <typename Container, std::enable_if_t<is_container<Container>::value, std::nullptr_t> = nullptr>
fenwick_tree_set(int n, const Container &values): fenwick_tree_set(n) {
construct_from_values(values);
}
// Construct a set containing the values `i` such that `seq01[i] == 1` (or `one` you give).
template <typename Container, std::enable_if_t<is_container<Container>::value, std::nullptr_t> = nullptr>
fenwick_tree_set(const Container &seq01, typename Container::value_type one = 1): fenwick_tree_set(seq01.size()) {
std::vector<int> values;
for (int i = 0; i < _n; ++i) if (seq01[i] == one) values.push_back(i);
construct_from_values(values);
}
// O(1).
// Number of elements.
int size() const { return _siz; }
// O(1).
// Check if `v` is contained. `v` may be out of range.
bool contains(int v) const {
if (not (0 <= v and v < _n)) return false;
const auto [t, u] = index(v);
return (_bs[t] >> u) & 1;
}
// O(log n) if `v` is not a member, O(1) otherwise.
// Insert `v` if not contained. Raise an assertion error if `v` is out of range.
// Return `true` if `v` is inserted, `false` otherwise.
bool insert(int v) {
if (contains(v)) return false;
add<+1>(v);
const auto [t, u] = index(v);
_bs[t] |= uint64_t(1) << u;
return true;
}
// O(log n) if `v` is a member, O(1) otherwise.
// Erase `v` if contained. Raise an assertion error if `v` is out of range.
// Return `true` if `v` is erased, `false` otherwise.
bool erase(int v) {
if (not contains(v)) return false;
add<-1>(v);
const auto [t, u] = index(v);
_bs[t] &= ~(uint64_t(1) << u);
return true;
}
// O(log n).
// Count elements < `v`. `v` may be out of range.
int count_lt(int v) const {
if (v <= 0) return 0;
if (v >= _n) return _siz;
auto [t, u] = index(v);
int res = __builtin_popcountll(_bs[t] & ((uint64_t(1) << u) - 1));
for (; t; t &= t - 1) res += _d[t];
return res;
}
// O(log n).
// Count elements <= `v`. `v` may be out of range.
int count_leq(int v) const { return count_lt(v + 1); }
// O(log n).
// Count elements > `v`. `v` may be out of range.
int count_gt(int v) const { return _siz - count_leq(v); }
// O(log n).
// Count elements >= `v`. `v` may be out of range.
int count_geq(int v) const { return _siz - count_lt(v); }
// O(log n).
// `k`-th smallest element or `-1` if `k` is out of range.
int kth_element(int k) const {
// Out of range
if (not (0 <= k and k < _siz)) return -1;
// Binary search
int t = 1 << _lg;
// (I) non-leaf node
// [ t ]
// [t-p] [t+p]
for (int p = 1 << _lg >> 1; p; p >>= 1) {
if (int nk = t <= _wn ? k - _d[t] : -1; nk >= 0) k = nk, t += p;
else t -= p;
}
// (II) leaf node
if (int nk = t <= _wn ? k - _d[t] : -1; nk >= 0) k = nk, ++t;
--t;
return (t << LOG_WORD) | kth_setbit(_bs[t], k);
}
// O(log n).
// `k`-th smallest element or `-1` if `k` is out of range.
int operator[](int k) const { return kth_element(k); }
// O(log n).
// Max element <= `v` or `-1` if not exists
int max_leq(int v) const {
if (v < 0) return -1;
v = std::min(v, _n - 1);
const auto [t, u] = index(v);
const int lz = (WORD - 1) - u;
if (const uint64_t bits = _bs[t] << lz >> lz) {
return (t << LOG_WORD) | top_setbit(bits);
}
for (int i = 1; i <= SEARCH_WIDTH; ++i) {
if (t - i < 0) return -1;
if (_bs[t - i]) return ((t - i) << LOG_WORD) | top_setbit(_bs[t - i]);
}
return *--upper_bound(v);
}
// O(log n).
// Max element < `v` or `-1` if not exists
int max_lt(int v) const { return max_leq(v - 1); }
// O(log n).
// Min element >= `v` or `-1` if not exists
int min_geq(int v) const {
if (v >= _n) return -1;
v = std::max(v, 0);
const auto [t, u] = index(v);
if (const uint64_t bits = _bs[t] >> u << u) {
return (t << LOG_WORD) | __builtin_ctzll(bits);
}
for (int i = 1; i <= SEARCH_WIDTH; ++i) {
if (t + i >= _wn) return -1;
if (_bs[t + i]) return ((t + i) << LOG_WORD) | __builtin_ctzll(_bs[t + i]);
}
return *lower_bound(v);
}
// O(log n).
// Min element > `v` or `-1` if not exists
int min_gt(int v) const { return min_geq(v + 1); }
private:
struct IndexHolder {
friend fenwick_tree_set;
using difference_type = int;
using value_type = int;
using pointer = value_type*;
using reference = value_type&;
using iterator_category = std::random_access_iterator_tag;
// O(1). Index of the element pointed to by the iterator. Negative values or values greater than or equal to `n` (= size of the set) means that the iterator doesn't point to any element.
int index() const { return i; }
// O(1). Check if the iterator points to some element.
bool has_value() const { return 0 <= i and i < ptr->size(); }
// O(1)
IndexHolder& operator++() { return ++i, *this; }
// O(1)
IndexHolder operator++(int) { IndexHolder ret = *this; ++(*this); return ret; }
// O(1)
IndexHolder& operator--() { return --i, *this; }
// O(1)
IndexHolder operator--(int) { IndexHolder ret = *this; --(*this); return ret; }
// O(1)
IndexHolder& operator+=(difference_type dif) { return i += dif, *this; }
// O(1)
friend IndexHolder operator+(IndexHolder it, difference_type dif) { it += dif; return it; }
// O(1)
friend IndexHolder operator+(difference_type dif, IndexHolder it) { it += dif; return it; }
// O(1)
IndexHolder& operator-=(difference_type dif) { return i -= dif, *this; }
// O(1)
friend IndexHolder operator-(IndexHolder it, difference_type dif) { it -= dif; return it; }
// O(1)
difference_type operator-(const IndexHolder &rhs) const { return i - rhs.i; }
// O(log n)
value_type operator[](difference_type i) const { return *((*this) + i); }
// O(log n)
value_type operator*() const { return ptr->kth_element(i); }
// O(1)
bool operator!=(const IndexHolder &rhs) const { return i != rhs.i; }
// O(1)
bool operator==(const IndexHolder &rhs) const { return i == rhs.i; }
// O(1)
bool operator<(const IndexHolder &rhs) const { return i < rhs.i; }
// O(1)
bool operator<=(const IndexHolder &rhs) const { return i <= rhs.i; }
// O(1)
bool operator>(const IndexHolder &rhs) const { return i > rhs.i; }
// O(1)
bool operator>=(const IndexHolder &rhs) const { return i >= rhs.i; }
private:
IndexHolder(const fenwick_tree_set* ptr, int i) : ptr(ptr), i(i) {}
const fenwick_tree_set* ptr;
int i;
};
public:
using iterator = IndexHolder;
using difference_type = iterator::difference_type;
using value_type = iterator::value_type;
using pointer = iterator::pointer;
using reference = iterator::reference;
// O(1).
iterator begin() const { return iterator(this, 0); }
// O(1).
iterator end() const { return iterator(this, _siz); }
// O(log n).
iterator lower_bound(int v) const { return iterator(this, count_lt(v)); }
// O(log n).
iterator upper_bound(int v) const { return iterator(this, count_leq(v)); }
// O(log n) if `v` is a member, O(1) otherwise.
iterator find(int v) const { return contains(v) ? lower_bound(v) : end(); }
// O(log n).
iterator erase(iterator it) { return erase(*it), it; }
private:
int _n, _wn, _lg, _siz;
std::vector<int> _d; // Fenwick Tree
std::vector<uint64_t> _bs; // Bitset
template <typename Container, std::enable_if_t<is_container<Container>::value, std::nullptr_t> = nullptr>
void construct_from_values(const Container &values) {
for (int v : values) {
assert(0 <= v and v < _n);
const auto [t, u] = index(v);
if ((_bs[t] >> u) & 1) continue;
++_siz;
++_d[t + 1];
_bs[t] |= uint64_t(1) << u;
}
for (int i = 1; i <= _wn; ++i) {
const int p = i + (-i & i);
if (p <= _wn) _d[p] += _d[i];
}
}
static constexpr int _large(int i) { return i >> LOG_WORD; }
static constexpr int _small(int i) { return i & MASK_WORD; }
static constexpr std::array<int, 2> index(int i) { return { _large(i), _small(i) }; }
// Position of highest set bit
static constexpr int top_setbit(uint64_t x) { return (WORD - 1) - __builtin_clzll(x); }
// Position of k-th set bit
__attribute__((target("bmi2")))
static int kth_setbit(uint64_t x, int k) { return __builtin_ctzll(_pdep_u64(uint64_t(1) << k, x)); }
template <int k>
void add(int v) {
assert(0 <= v and v < _n);
_siz += k;
for (int t = _large(v) + 1; t <= _wn; t += -t & t) _d[t] += k;
}
};
} // namespace suisen
#line 5 "library/range_query/range_set_range_composite.hpp"
#include <atcoder/segtree>
namespace suisen {
template <typename T, T(*op)(T, T), T(*e)()>
struct RangeSetRangeComposite {
RangeSetRangeComposite() : RangeSetRangeComposite(0) {}
explicit RangeSetRangeComposite(int n, T val = e()) : _n(n), _seg(std::vector(_n, e())), _vs(n, e()) {
_pos.insert(0), _vs[0] = val;
_seg.set(0, _pow(0, n));
_pos.insert(_n);
}
explicit RangeSetRangeComposite(const std::vector<T>& a) : _n(a.size()), _seg(a), _vs(a), _pos(_n + 1, true) {}
void set(int l, int r, const T& f) {
assert(0 <= l and l <= r and r <= _n);
if (l == r) return;
if (const int ml = _pos.min_geq(l); ml != l) {
const int pl = _pos.max_lt(ml);
_pos.insert(l);
_vs[l] = _vs[pl];
_seg.set(pl, _pow(pl, l - pl));
}
if (const int mr = _pos.min_geq(r); mr != r) {
const int pr = _pos.max_lt(mr);
_pos.insert(r);
_vs[r] = _vs[pr];
_seg.set(r, _pow(r, mr - r));
}
_vs[l] = f;
_seg.set(l, _pow(l, r - l));
for (int i = l; (i = _pos.min_gt(i)) != r;) _pos.erase(i), _seg.set(i, e());
}
T prod(int l, int r) {
assert(0 <= l and l <= r and r <= _n);
if (l == r) return e();
const auto ml = _pos.min_geq(l);
if (ml >= r) return _pow(_pos.max_lt(ml), r - l);
const int mr = _pos.max_leq(r);
T fl = ml == l ? e() : _pow(_pos.max_lt(ml), ml - l);
T fm = _seg.prod(ml, mr);
T fr = mr == r ? e() : _pow(mr, r - mr);
return op(op(fl, fm), fr);
}
private:
int _n;
atcoder::segtree<T, op, e> _seg;
std::vector<T> _vs;
suisen::fenwick_tree_set _pos;
T _pow(int i, int n) const {
T res = e();
for (T v = _vs[i]; n; n >>= 1) {
if (n & 1) res = op(res, v);
v = op(v, v);
}
return res;
}
};
} // namespace suisen
#line 4 "test/src/range_query/range_set_range_composite/range_set_range_composite.test.cpp"
#include <iostream>
#include <atcoder/modint>
using mint = atcoder::modint998244353;
using affine = std::pair<mint, mint>;
affine op(affine f, affine g) {
return { g.first * f.first, g.first * f.second + g.second };
}
affine e() {
return affine{ 1, 0 };
}
int main() {
std::ios::sync_with_stdio(false);
std::cin.tie(nullptr);
int n, q;
std::cin >> n >> q;
std::vector<affine> init(n);
for (int i = 0; i < n; ++i) {
int a, b;
std::cin >> a >> b;
init[i] = { a, b };
}
suisen::RangeSetRangeComposite<affine, op, e> seg(init);
while (q--) {
int query_type;
std::cin >> query_type;
if (query_type == 0) {
int l, r, c, d;
std::cin >> l >> r >> c >> d;
seg.set(l, r, affine{ c, d });
} else {
int l, r, x;
std::cin >> l >> r >> x;
auto [c, d] = seg.prod(l, r);
std::cout << (c * x + d).val() << '\n';
}
}
}