This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://atcoder.jp/contests/arc132/tasks/arc132_f"
#include <array>
#include <iostream>
#include "library/transform/kronecker_power.hpp"
using suisen::kronecker_power_transform::kronecker_power_transform;
void trans(long long &x0, long long &x1, long long &x2, long long &x3) {
x3 += x0 + x1 + x2;
}
void trans2(long long &x0, long long &x1, long long &x2, long long &x3) {
x0 = x3 - x0;
x1 = x3 - x1;
x2 = x3 - x2;
x3 = 0;
}
int main() {
std::array<int, 256> mp;
mp['P'] = 0, mp['R'] = 1, mp['S'] = 2;
std::ios::sync_with_stdio(false);
std::cin.tie(nullptr);
int k, n, m;
std::cin >> k >> n >> m;
auto count = [&](int num) {
std::vector<long long> f(1 << (2 * k), 0);
for (int i = 0; i < num; ++i) {
int a = 0;
for (int j = 0; j < k; ++j) {
char c;
std::cin >> c;
a |= mp[c] << (2 * j);
}
++f[a];
}
return f;
};
auto f = count(n), g = count(m);
kronecker_power_transform<long long, 4, trans>(f);
kronecker_power_transform<long long, 4, trans>(g);
for (int i = 0; i < 1 << (2 * k); ++i) f[i] *= g[i];
kronecker_power_transform<long long, 4, trans2>(f);
int pow3 = 1;
for (int i = 0; i < k; ++i) pow3 *= 3;
for (int i = 0; i < pow3; ++i) {
int v = 0;
for (int t = i, j = 0; j < k; ++j, t /= 3) {
int d = t % 3;
v |= (d == 2 ? 0 : d + 1) << (2 * (k - j - 1));
}
std::cout << (long long) n * m - f[v] << '\n';
}
return 0;
}
#line 1 "test/src/transform/kronecker_power/arc132_f.test.cpp"
#define PROBLEM "https://atcoder.jp/contests/arc132/tasks/arc132_f"
#include <array>
#include <iostream>
#line 1 "library/transform/kronecker_power.hpp"
#include <cassert>
#include <utility>
#include <vector>
#line 1 "library/util/default_operator.hpp"
namespace suisen {
namespace default_operator {
template <typename T>
auto zero() -> decltype(T { 0 }) { return T { 0 }; }
template <typename T>
auto one() -> decltype(T { 1 }) { return T { 1 }; }
template <typename T>
auto add(const T &x, const T &y) -> decltype(x + y) { return x + y; }
template <typename T>
auto sub(const T &x, const T &y) -> decltype(x - y) { return x - y; }
template <typename T>
auto mul(const T &x, const T &y) -> decltype(x * y) { return x * y; }
template <typename T>
auto div(const T &x, const T &y) -> decltype(x / y) { return x / y; }
template <typename T>
auto mod(const T &x, const T &y) -> decltype(x % y) { return x % y; }
template <typename T>
auto neg(const T &x) -> decltype(-x) { return -x; }
template <typename T>
auto inv(const T &x) -> decltype(one<T>() / x) { return one<T>() / x; }
} // default_operator
namespace default_operator_noref {
template <typename T>
auto zero() -> decltype(T { 0 }) { return T { 0 }; }
template <typename T>
auto one() -> decltype(T { 1 }) { return T { 1 }; }
template <typename T>
auto add(T x, T y) -> decltype(x + y) { return x + y; }
template <typename T>
auto sub(T x, T y) -> decltype(x - y) { return x - y; }
template <typename T>
auto mul(T x, T y) -> decltype(x * y) { return x * y; }
template <typename T>
auto div(T x, T y) -> decltype(x / y) { return x / y; }
template <typename T>
auto mod(T x, T y) -> decltype(x % y) { return x % y; }
template <typename T>
auto neg(T x) -> decltype(-x) { return -x; }
template <typename T>
auto inv(T x) -> decltype(one<T>() / x) { return one<T>() / x; }
} // default_operator
} // namespace suisen
#line 9 "library/transform/kronecker_power.hpp"
namespace suisen {
namespace kronecker_power_transform {
namespace internal {
template <typename UnitTransform, typename ReferenceGetter, std::size_t... Seq>
void unit_transform(UnitTransform transform, ReferenceGetter ref_getter, std::index_sequence<Seq...>) {
transform(ref_getter(Seq)...);
}
}
template <typename T, std::size_t D, auto unit_transform>
void kronecker_power_transform(std::vector<T> &x) {
const std::size_t n = x.size();
for (std::size_t block = 1; block < n; block *= D) {
for (std::size_t l = 0; l < n; l += D * block) {
for (std::size_t offset = l; offset < l + block; ++offset) {
const auto ref_getter = [&](std::size_t i) -> T& { return x[offset + i * block]; };
internal::unit_transform(unit_transform, ref_getter, std::make_index_sequence<D>());
}
}
}
}
template <typename T, typename UnitTransform>
void kronecker_power_transform(std::vector<T> &x, const std::size_t D, UnitTransform unit_transform) {
const std::size_t n = x.size();
std::vector<T> work(D);
for (std::size_t block = 1; block < n; block *= D) {
for (std::size_t l = 0; l < n; l += D * block) {
for (std::size_t offset = l; offset < l + block; ++offset) {
for (std::size_t i = 0; i < D; ++i) work[i] = x[offset + i * block];
unit_transform(work);
for (std::size_t i = 0; i < D; ++i) x[offset + i * block] = work[i];
}
}
}
}
template <typename T, auto e = default_operator::zero<T>, auto add = default_operator::add<T>, auto mul = default_operator::mul<T>>
auto kronecker_power_transform(std::vector<T> &x, const std::vector<std::vector<T>> &A) -> decltype(e(), add(std::declval<T>(), std::declval<T>()), mul(std::declval<T>(), std::declval<T>()), void()) {
const std::size_t D = A.size();
assert(D == A[0].size());
auto unit_transform = [&](std::vector<T> &x) {
std::vector<T> y(D, e());
for (std::size_t i = 0; i < D; ++i) for (std::size_t j = 0; j < D; ++j) {
y[i] = add(y[i], mul(A[i][j], x[j]));
}
x.swap(y);
};
kronecker_power_transform<T>(x, D, unit_transform);
}
}
} // namespace suisen
#line 7 "test/src/transform/kronecker_power/arc132_f.test.cpp"
using suisen::kronecker_power_transform::kronecker_power_transform;
void trans(long long &x0, long long &x1, long long &x2, long long &x3) {
x3 += x0 + x1 + x2;
}
void trans2(long long &x0, long long &x1, long long &x2, long long &x3) {
x0 = x3 - x0;
x1 = x3 - x1;
x2 = x3 - x2;
x3 = 0;
}
int main() {
std::array<int, 256> mp;
mp['P'] = 0, mp['R'] = 1, mp['S'] = 2;
std::ios::sync_with_stdio(false);
std::cin.tie(nullptr);
int k, n, m;
std::cin >> k >> n >> m;
auto count = [&](int num) {
std::vector<long long> f(1 << (2 * k), 0);
for (int i = 0; i < num; ++i) {
int a = 0;
for (int j = 0; j < k; ++j) {
char c;
std::cin >> c;
a |= mp[c] << (2 * j);
}
++f[a];
}
return f;
};
auto f = count(n), g = count(m);
kronecker_power_transform<long long, 4, trans>(f);
kronecker_power_transform<long long, 4, trans>(g);
for (int i = 0; i < 1 << (2 * k); ++i) f[i] *= g[i];
kronecker_power_transform<long long, 4, trans2>(f);
int pow3 = 1;
for (int i = 0; i < k; ++i) pow3 *= 3;
for (int i = 0; i < pow3; ++i) {
int v = 0;
for (int t = i, j = 0; j < k; ++j, t /= 3) {
int d = t % 3;
v |= (d == 2 ? 0 : d + 1) << (2 * (k - j - 1));
}
std::cout << (long long) n * m - f[v] << '\n';
}
return 0;
}