cp-library-cpp

This documentation is automatically generated by online-judge-tools/verification-helper

View the Project on GitHub suisen-cp/cp-library-cpp

:heavy_check_mark: test/src/tree/point_get_range_contour_operate/yuki1038.test.cpp

Depends on

Code

#define PROBLEM "https://yukicoder.me/problems/no/1038"

#include <iostream>

#include "library/tree/point_get_range_contour_operate.hpp"

long long mapping(long long f, long long x) {
    return f + x;
}
long long composition(long long x, long long y) {
    return x + y;
}
long long id() {
    return 0;
}

#include <chrono>

int main() {
    std::ios::sync_with_stdio(false);
    std::cin.tie(nullptr);

    int n, q;
    std::cin >> n >> q;

    suisen::PointGetRangeContourOperate<long long, long long, mapping, composition, id> g(n);
    for (int i = 0; i < n - 1; ++i) {
        int u, v;
        std::cin >> u >> v;
        --u, --v;
        g.add_edge(u, v);
    }

    std::vector<std::tuple<int, int, int>> qs(q);
    for (auto& [x, y, z] : qs) {
        std::cin >> x >> y >> z;
        --x, ++y;
    }
    std::vector<long long> ans(q);

    auto t1 = std::chrono::system_clock::now();
    g.build(std::vector<long long>(n, 0LL));
    auto t2 = std::chrono::system_clock::now();
    for (int i = 0; i < q; ++i) {
        const auto& [x, y, z] = qs[i];
        ans[i] = g.get(x);
        g.apply(x, 0, y, z);
    }
    auto t3 = std::chrono::system_clock::now();

    for (auto& e : ans) std::cout << e << '\n';

    auto build_time_ms = std::chrono::duration_cast<std::chrono::milliseconds>(t2 - t1).count();
    auto query_time_ms = std::chrono::duration_cast<std::chrono::milliseconds>(t3 - t2).count();

    std::cerr << "build : " << build_time_ms << " ms" << std::endl;
    std::cerr << "query : " << query_time_ms << " ms" << std::endl;

    return 0;
}
#line 1 "test/src/tree/point_get_range_contour_operate/yuki1038.test.cpp"
#define PROBLEM "https://yukicoder.me/problems/no/1038"

#include <iostream>

#line 1 "library/tree/point_get_range_contour_operate.hpp"



#include <algorithm>
#include <array>
#include <cassert>
#include <cstdint>
#include <deque>
#include <queue>
#include <random>
#include <tuple>
#include <utility>

namespace suisen {
    template <typename T, typename F, T(*mapping)(F, T), F(*composition)(F, F), F(*id)()>
    struct PointGetRangeContourOperate {
        using value_type = T;
        using operator_type = F;
    private:
        struct InternalCommutativeDualSegmentTree {
            InternalCommutativeDualSegmentTree(int n = 0) : _n(n), _laz(2 * _n, id()) {}
            void apply(int l, int r, const operator_type& f) {
                l = std::max(l, 0), r = std::min(r, _n);
                for (l += _n, r += _n; l < r; l >>= 1, r >>= 1) {
                    if (l & 1) _laz[l] = composition(f, _laz[l]), ++l;
                    if (r & 1) --r, _laz[r] = composition(f, _laz[r]);
                }
            }
            operator_type get(int i) const {
                operator_type res = id();
                for (i += _n; i; i >>= 1) res = composition(res, _laz[i]);
                return res;
            }
        private:
            int _n;
            std::vector<operator_type> _laz;
        };

        using sequence_type = InternalCommutativeDualSegmentTree;

        struct AuxInfo {
            int8_t child_index;
            int dep;
        };

        struct TreeNode {
            std::vector<int> adj;
            typename std::array<AuxInfo, 30>::iterator info_it;
        };
    public:
        PointGetRangeContourOperate(int n = 0) : _n(n), _dat(_n), _nodes(_n), _par(2 * _n, -1), _info(_n), _subtrees(2 * _n) {}

        void add_edge(int u, int v) {
            _nodes[u].adj.push_back(v);
            _nodes[v].adj.push_back(u);
        }
        // O(NlogN)
        void build(const std::vector<value_type>& a) {
            for (int i = 0; i < _n; ++i) _dat[i] = a[i], _nodes[i].info_it = _info[i].begin();

            int new_node = _n;
            std::vector<int> sub_size(2 * _n, 0);
            std::vector<int> ctr(2 * _n, -1);

            std::vector<int> head(2 * _n), tail(2 * _n), link(2 * _n);
            for (int i = 0; i < _n; ++i) head[i] = tail[i] = i;

            auto rec = [&](auto rec, int r, int siz) -> int {
                int c = -1;
                auto get_centroid = [&](auto get_centroid, int u, int p) -> void {
                    sub_size[u] = 1;
                    for (int v : _nodes[u].adj) if (v != p) {
                        get_centroid(get_centroid, v, u);
                        if (v == c) {
                            sub_size[u] = siz - sub_size[c];
                            break;
                        }
                        sub_size[u] += sub_size[v];
                    }
                    if (c < 0 and sub_size[u] * 2 > siz) c = u;
                };
                get_centroid(get_centroid, r, -1);

                for (int v : _nodes[c].adj) {
                    const int comp_size = sub_size[v];
                    _nodes[v].adj.erase(std::find(_nodes[v].adj.begin(), _nodes[v].adj.end(), c));
                    ctr[v] = rec(rec, v, comp_size);
                    sub_size[v] = comp_size;
                }

                auto comp = [&](int i, int j) { return sub_size[i] > sub_size[j]; };
                std::priority_queue<int, std::vector<int>, decltype(comp)> pq{ comp };

                for (int v : _nodes[c].adj) {
                    link[v] = -1;
                    pq.push(v);
                }

                auto build_sequence = [&, this](const int root_head, const bool child_index) {
                    std::deque<std::pair<int, int>> dq;
                    for (int root = root_head; root >= 0; root = link[root]) dq.emplace_back(root, -1);
                    int dep = 0, nxt = -1;
                    while (dq.size()) {
                        const auto [u, pu] = dq.front();
                        dq.pop_front();
                        if (u == nxt) ++dep, nxt = -1;
                        auto& node = _nodes[u];
                        *node.info_it++ = { child_index, dep };
                        for (int v : node.adj) if (v != pu) {
                            dq.emplace_back(v, u);
                            if (nxt < 0) nxt = v;
                        }
                    }
                    return sequence_type(++dep);
                };

                while (pq.size() >= 2) {
                    const int u = pq.top(); pq.pop();
                    const int v = pq.top(); pq.pop();
                    if (pq.empty()) {
                        _par[ctr[u]] = _par[ctr[v]] = c;
                        _subtrees[c][0] = build_sequence(head[u], 0);
                        _subtrees[c][1] = build_sequence(head[v], 1);
                        break;
                    }
                    sub_size[new_node] = sub_size[u] + sub_size[v];
                    ctr[new_node] = new_node;
                    _par[ctr[u]] = _par[ctr[v]] = new_node;
                    _subtrees[new_node][0] = build_sequence(head[u], 0);
                    _subtrees[new_node][1] = build_sequence(head[v], 1);
                    head[new_node] = head[u], tail[new_node] = tail[v], link[tail[u]] = head[v];
                    pq.push(new_node);
                    ++new_node;
                }
                if (pq.size()) {
                    int u = pq.top(); pq.pop();
                    _par[ctr[u]] = c;
                    _subtrees[c][0] = build_sequence(head[u], 0);
                }
                for (int v : _nodes[c].adj) _nodes[v].adj.push_back(c);
                return c;
            };
            rec(rec, 0, _n);
            _par.resize(new_node), _par.shrink_to_fit();
            _subtrees.resize(new_node), _subtrees.shrink_to_fit();
        }

        // O((logN)^2)
        value_type get(int u) const {
            value_type res = _dat[u];
            int v = _par[u];
            const auto it_end = _nodes[u].info_it;
            for (auto it = _info[u].begin(); it != it_end; ++it) res = mapping(_subtrees[std::exchange(v, _par[v])][it->child_index].get(it->dep), res);
            return res;
        }
        // O(1)
        void apply(int u, const operator_type& f) {
            _dat[u] = mapping(f, _dat[u]);
        }
        // O((logN)^2)
        void apply(int u, int dl, int dr, const operator_type& f) {
            if (dl <= 0 and 0 < dr) _dat[u] = mapping(f, _dat[u]);
            _subtrees[u][0].apply(dl - 1, dr - 1, f);
            _subtrees[u][1].apply(dl - 1, dr - 1, f);
            int v = _par[u];
            const auto it_end = _nodes[u].info_it;
            for (auto it = _info[u].begin(); it != it_end; ++it) {
                int ql = dl - it->dep - 1, qr = dr - it->dep - 1;
                if (v < _n and ql <= 0 and 0 < qr) _dat[v] = mapping(f, _dat[v]);
                _subtrees[std::exchange(v, _par[v])][it->child_index ^ 1].apply(ql - 1, qr - 1, f);
            }
        }

    private:
        int _n;
        std::vector<value_type> _dat;
        std::vector<TreeNode> _nodes;
        std::vector<int> _par;
        std::vector<std::array<AuxInfo, 30>> _info;
        std::vector<std::array<sequence_type, 2>> _subtrees;
    };
} // namespace suisen


#line 6 "test/src/tree/point_get_range_contour_operate/yuki1038.test.cpp"

long long mapping(long long f, long long x) {
    return f + x;
}
long long composition(long long x, long long y) {
    return x + y;
}
long long id() {
    return 0;
}

#include <chrono>

int main() {
    std::ios::sync_with_stdio(false);
    std::cin.tie(nullptr);

    int n, q;
    std::cin >> n >> q;

    suisen::PointGetRangeContourOperate<long long, long long, mapping, composition, id> g(n);
    for (int i = 0; i < n - 1; ++i) {
        int u, v;
        std::cin >> u >> v;
        --u, --v;
        g.add_edge(u, v);
    }

    std::vector<std::tuple<int, int, int>> qs(q);
    for (auto& [x, y, z] : qs) {
        std::cin >> x >> y >> z;
        --x, ++y;
    }
    std::vector<long long> ans(q);

    auto t1 = std::chrono::system_clock::now();
    g.build(std::vector<long long>(n, 0LL));
    auto t2 = std::chrono::system_clock::now();
    for (int i = 0; i < q; ++i) {
        const auto& [x, y, z] = qs[i];
        ans[i] = g.get(x);
        g.apply(x, 0, y, z);
    }
    auto t3 = std::chrono::system_clock::now();

    for (auto& e : ans) std::cout << e << '\n';

    auto build_time_ms = std::chrono::duration_cast<std::chrono::milliseconds>(t2 - t1).count();
    auto query_time_ms = std::chrono::duration_cast<std::chrono::milliseconds>(t3 - t2).count();

    std::cerr << "build : " << build_time_ms << " ms" << std::endl;
    std::cerr << "query : " << query_time_ms << " ms" << std::endl;

    return 0;
}
Back to top page