cp-library-cpp

This documentation is automatically generated by online-judge-tools/verification-helper

View the Project on GitHub suisen-cp/cp-library-cpp

:heavy_check_mark: test/src/tree/point_set_range_contour_sum/dummy.test.cpp

Depends on

Code

#define PROBLEM "https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=ITP1_1_A"

#include <iostream>
#include <numeric>
#include <random>

#include "library/tree/point_set_range_contour_sum.hpp"

int op(int x, int y) {
    return std::max(x, y);
}
int e() {
    return 0;
}

using Solution = suisen::PointSetRangeContourSum<int, op, e>;

struct NaiveSolution {
    NaiveSolution(std::vector<std::vector<int>> g, std::vector<int> dat) : g(g), dat(dat) {}

    void set(int u, int val) {
        dat[u] = val;
    }
    int prod(int k, int dl, int dr) {
        int res = e();
        auto dfs = [&](auto dfs, int u, int p, int dep) -> void {
            if (dl <= dep and dep < dr) res = op(res, dat[u]);
            for (int v : g[u]) {
                if (v == p) continue;
                dfs(dfs, v, u, dep + 1);
            }
        };
        dfs(dfs, k, -1, 0);
        return res;
    }
private:
    std::vector<std::vector<int>> g;
    std::vector<int> dat;
};

void random_queries(int n, int q, Solution& t1, NaiveSolution& t2) {
    auto check = [&](int k, int dl, int dr) {
        int sum1 = t1.sum(k, dl, dr);
        int sum2 = t2.prod(k, dl, dr);
        assert(sum1 == sum2);
    };

    std::mt19937 rng{ std::random_device{}() };
    while (q-- > 0) {
        int qt = rng();
        if (qt == 1) {
            int i = rng() % n;
            int v = rng() % 10000;
            t1.set(i, v);
            t2.set(i, v);
        } else {
            int i = rng() % n;
            int l = rng() % n;
            int r = l + rng() % (n - l);
            check(i, l, r);
        }
    }
}

#include <atcoder/dsu>

std::vector<std::vector<int>> random_tree(int n) {
    std::mt19937 rng{ std::random_device{}() };

    std::vector<std::pair<int, int>> edges;
    for (int i = 0; i < n; ++i) for (int j = 0; j < i; ++j) {
        edges.emplace_back(i, j);
    }
    std::shuffle(edges.begin(), edges.end(), rng);

    std::vector<std::vector<int>> g(n);

    atcoder::dsu uf(n);
    int con = n;
    while (con > 1) {
        auto [u, v] = edges.back();
        edges.pop_back();
        if (uf.same(u, v)) continue;
        uf.merge(u, v);
        --con;
        g[u].push_back(v);
        g[v].push_back(u);
    }
    return g;
}

void test1(int q = 100000) {
    std::vector<std::vector<int>> g{
        { 1, 8, 16 },       // 0
        { 0, 2, 3 },        // 1
        { 1 },              // 2
        { 1, 4, 7 },        // 3
        { 3, 5, 6 },        // 4
        { 4 },              // 5
        { 4 },              // 6
        { 3 },              // 7
        { 0, 9, 10 },       // 8
        { 8 },              // 9
        { 8, 11, 15 },      // 10
        { 10, 12, 13, 14 }, // 11
        { 11 },             // 12
        { 11 },             // 13
        { 11 },             // 14
        { 10 },             // 15
        { 0, 17, 18, 20 },  // 16
        { 16 },             // 17
        { 16, 19 },         // 18
        { 18 },             // 19
        { 16, 21, 24 },     // 20
        { 20, 22, 23 },     // 21
        { 21 },             // 22
        { 21 },             // 23
        { 20 }              // 24
    };

    const int n = g.size();
    std::vector<int> dat(n);
    std::iota(dat.begin(), dat.end(), 1);

    suisen::PointSetRangeContourSum<int, op, e> contour_aggregator(dat);
    for (int i = 0; i < n; ++i) for (int j : g[i]) if (i < j) {
        contour_aggregator.add_edge(i, j);
    }

    contour_aggregator.build();
    NaiveSolution naive(g, dat);

    random_queries(n, q, contour_aggregator, naive);
}

void test2(int n = 1000, int q = 10000) {
    auto g = random_tree(n);
    std::vector<int> dat(n);
    std::iota(dat.begin(), dat.end(), 1);

    suisen::PointSetRangeContourSum<int, op, e> contour_aggregator(dat);
    for (int i = 0; i < n; ++i) for (int j : g[i]) if (i < j) {
        contour_aggregator.add_edge(i, j);
    }

    contour_aggregator.build();
    NaiveSolution naive(g, dat);

    random_queries(n, q, contour_aggregator, naive);
}

int main() {
    test1();
    test2();
    std::cout << "Hello World" << std::endl;
    return 0;
}
#line 1 "test/src/tree/point_set_range_contour_sum/dummy.test.cpp"
#define PROBLEM "https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=ITP1_1_A"

#include <iostream>
#include <numeric>
#include <random>

#line 1 "library/tree/point_set_range_contour_sum.hpp"



#include <array>
#include <cstdint>
#include <deque>
#include <map>
#include <queue>
#include <tuple>
#include <utility>

#include <atcoder/segtree>

namespace suisen {
    template <typename T, T(*op)(T, T), T(*e)()>
    struct PointSetRangeContourSum {
        PointSetRangeContourSum() = default;
        PointSetRangeContourSum(int n, const T &fill_value) : PointSetRangeContourSum(std::vector<T>(n, fill_value)) {}
        PointSetRangeContourSum(const std::vector<T> &dat) : _n(dat.size()), _g(_n), _par(_n, -1), _removed(_n, false), _info(_n), _nodes(_n), _dat(dat) {
            _par.reserve(2 * _n);
            for (int i = 0; i < _n; ++i) _info[i].reserve(30);
        }

        using segtree_type = atcoder::segtree<T, op, e>;

        struct AuxData {
            int segtree_index;
            int8_t child_index;
            int dep;
        };

        struct Node {
            std::vector<int> _sep;
            segtree_type _seq;

            Node() = default;
            Node(const std::vector<std::vector<int>>& g, const std::vector<int8_t>& removed, const std::vector<int> &roots, const bool child_index, std::vector<std::vector<AuxData>>& info, const std::vector<T> &dat, int siz) {
                std::vector<T> reordered_dat(siz);
                _sep.push_back(0);
                std::deque<std::tuple<int, int, int>> dq;
                for (int r : roots) dq.emplace_back(r, -1, 0);
                int pre_dist = 0, cnt = 0;
                while (dq.size()) {
                    const auto [u, pu, du] = dq.front();
                    dq.pop_front();
                    if (du == pre_dist + 1) _sep.push_back(cnt), pre_dist = du;
                    info[u].push_back({ cnt, child_index, du });
                    reordered_dat[cnt++] = dat[u];
                    for (int v : g[u]) if (v != pu and not removed[v]) dq.emplace_back(v, u, du + 1);
                }
                _sep.push_back(cnt);
                _seq = segtree_type(reordered_dat);
            }

            void set(int i, const T& val) {
                _seq.set(i, val);
            }
            T sum(int dl, int dr) const {
                dl = std::max(dl, 0);
                dr = std::min(dr, int(_sep.size()) - 1);
                return dl < dr ? _seq.prod(_sep[dl], _sep[dr]) : e();
            }
        };

        void add_edge(int u, int v) {
            _g[u].push_back(v);
            _g[v].push_back(u);
        }

        void build() {
            std::vector<int> sub_size(_n, 0);
            std::vector<int> ctr(_n, -1);
            sub_size.reserve(2 * _n);
            ctr.reserve(2 * _n);
            std::vector<std::vector<int>> ch(_n);
            ch.reserve(2 * _n);

            auto merge = [&](std::vector<int> &&l, std::vector<int> &&r) -> std::vector<int>&& {
                if (l.size() > r.size()) std::swap(l, r);
                for (int v : l) r.push_back(v);
                return std::move(r);
            };

            auto rec = [&](auto rec, int r, int siz) -> int {
                int c = -1;
                auto get_centroid = [&](auto get_centroid, int u, int p) -> void {
                    sub_size[u] = 1;
                    for (int v : _g[u]) {
                        if (v == p or _removed[v]) continue;
                        get_centroid(get_centroid, v, u);
                        if (v == c) {
                            sub_size[u] = siz - sub_size[c];
                            break;
                        }
                        sub_size[u] += sub_size[v];
                    }
                    if (c < 0 and sub_size[u] * 2 > siz) c = u;
                };
                get_centroid(get_centroid, r, -1);

                _removed[c] = true;
                for (int v : _g[c]) {
                    if (_removed[v]) continue;
                    const int comp_size = sub_size[v];
                    ctr[v] = rec(rec, v, comp_size);
                    sub_size[v] = comp_size;
                }

                auto comp = [&](int i, int j) { return sub_size[i] > sub_size[j]; };
                std::priority_queue<int, std::vector<int>, decltype(comp)> pq{ comp };

                for (int v : _g[c]) {
                    if (_removed[v]) continue;
                    ch[v] = { v };
                    pq.push(v);
                }

                while (pq.size() >= 2) {
                    const int u = pq.top(); pq.pop();
                    const int v = pq.top(); pq.pop();
                    if (pq.empty()) {
                        _par[ctr[u]] = _par[ctr[v]] = c;
                        _nodes[c][0] = Node{ _g, _removed, ch[u], 0, _info, _dat, sub_size[u] };
                        _nodes[c][1] = Node{ _g, _removed, ch[v], 1, _info, _dat, sub_size[v] };
                        break;
                    }
                    const int new_node = sub_size.size();
                    sub_size.push_back(sub_size[u] + sub_size[v]);
                    ctr.push_back(new_node);
                    _par.push_back(-1);
                    _par[ctr[u]] = _par[ctr[v]] = new_node;
                    _nodes.emplace_back();
                    _nodes[new_node][0] = Node{ _g, _removed, ch[u], 0, _info, _dat, sub_size[u] };
                    _nodes[new_node][1] = Node{ _g, _removed, ch[v], 1, _info, _dat, sub_size[v] };
                    ch.push_back(merge(std::move(ch[u]), std::move(ch[v])));
                    ch[u].clear(), ch[u].shrink_to_fit();
                    ch[v].clear(), ch[v].shrink_to_fit();
                    pq.push(new_node);
                }
                if (pq.size()) {
                    int u = pq.top(); pq.pop();
                    _par[ctr[u]] = c;
                    _nodes[c][0] = Node{ _g, _removed, ch[u], 0, _info, _dat, sub_size[u] };
                }
                _removed[c] = false;
                return c;
            };
            rec(rec, 0, _n);
        }

        T get(int u) const {
            return _dat[u];
        }
        void set(int u, const T& val) {
            _dat[u] = val;
            int v = _par[u];
            for (const auto &info : _info[u]) {
                _nodes[std::exchange(v, _par[v])][info.child_index].set(info.segtree_index, val);
            }
        }
        T sum(int u, int dl, int dr) const {
            T res = dl <= 0 and 0 < dr ? _dat[u] : e();
            res = op(res, _nodes[u][0].sum(dl - 1, dr - 1));
            res = op(res, _nodes[u][1].sum(dl - 1, dr - 1));
            int v = _par[u];
            for (const auto &info : _info[u]) {
                int ql = dl - info.dep - 2, qr = dr - info.dep - 2;
                if (v < _n and ql <= -1 and -1 < qr) res = op(res, _dat[v]);
                res = op(res, _nodes[std::exchange(v, _par[v])][info.child_index ^ 1].sum(ql, qr));
            }
            return res;
        }

    private:
        int _n;
        std::vector<std::vector<int>> _g;
        std::vector<int> _par;
        std::vector<int8_t> _removed;
        std::vector<std::vector<AuxData>> _info;
        std::vector<std::array<Node, 2>> _nodes;
        std::vector<T> _dat;
    };
} // namespace suisen



#line 8 "test/src/tree/point_set_range_contour_sum/dummy.test.cpp"

int op(int x, int y) {
    return std::max(x, y);
}
int e() {
    return 0;
}

using Solution = suisen::PointSetRangeContourSum<int, op, e>;

struct NaiveSolution {
    NaiveSolution(std::vector<std::vector<int>> g, std::vector<int> dat) : g(g), dat(dat) {}

    void set(int u, int val) {
        dat[u] = val;
    }
    int prod(int k, int dl, int dr) {
        int res = e();
        auto dfs = [&](auto dfs, int u, int p, int dep) -> void {
            if (dl <= dep and dep < dr) res = op(res, dat[u]);
            for (int v : g[u]) {
                if (v == p) continue;
                dfs(dfs, v, u, dep + 1);
            }
        };
        dfs(dfs, k, -1, 0);
        return res;
    }
private:
    std::vector<std::vector<int>> g;
    std::vector<int> dat;
};

void random_queries(int n, int q, Solution& t1, NaiveSolution& t2) {
    auto check = [&](int k, int dl, int dr) {
        int sum1 = t1.sum(k, dl, dr);
        int sum2 = t2.prod(k, dl, dr);
        assert(sum1 == sum2);
    };

    std::mt19937 rng{ std::random_device{}() };
    while (q-- > 0) {
        int qt = rng();
        if (qt == 1) {
            int i = rng() % n;
            int v = rng() % 10000;
            t1.set(i, v);
            t2.set(i, v);
        } else {
            int i = rng() % n;
            int l = rng() % n;
            int r = l + rng() % (n - l);
            check(i, l, r);
        }
    }
}

#include <atcoder/dsu>

std::vector<std::vector<int>> random_tree(int n) {
    std::mt19937 rng{ std::random_device{}() };

    std::vector<std::pair<int, int>> edges;
    for (int i = 0; i < n; ++i) for (int j = 0; j < i; ++j) {
        edges.emplace_back(i, j);
    }
    std::shuffle(edges.begin(), edges.end(), rng);

    std::vector<std::vector<int>> g(n);

    atcoder::dsu uf(n);
    int con = n;
    while (con > 1) {
        auto [u, v] = edges.back();
        edges.pop_back();
        if (uf.same(u, v)) continue;
        uf.merge(u, v);
        --con;
        g[u].push_back(v);
        g[v].push_back(u);
    }
    return g;
}

void test1(int q = 100000) {
    std::vector<std::vector<int>> g{
        { 1, 8, 16 },       // 0
        { 0, 2, 3 },        // 1
        { 1 },              // 2
        { 1, 4, 7 },        // 3
        { 3, 5, 6 },        // 4
        { 4 },              // 5
        { 4 },              // 6
        { 3 },              // 7
        { 0, 9, 10 },       // 8
        { 8 },              // 9
        { 8, 11, 15 },      // 10
        { 10, 12, 13, 14 }, // 11
        { 11 },             // 12
        { 11 },             // 13
        { 11 },             // 14
        { 10 },             // 15
        { 0, 17, 18, 20 },  // 16
        { 16 },             // 17
        { 16, 19 },         // 18
        { 18 },             // 19
        { 16, 21, 24 },     // 20
        { 20, 22, 23 },     // 21
        { 21 },             // 22
        { 21 },             // 23
        { 20 }              // 24
    };

    const int n = g.size();
    std::vector<int> dat(n);
    std::iota(dat.begin(), dat.end(), 1);

    suisen::PointSetRangeContourSum<int, op, e> contour_aggregator(dat);
    for (int i = 0; i < n; ++i) for (int j : g[i]) if (i < j) {
        contour_aggregator.add_edge(i, j);
    }

    contour_aggregator.build();
    NaiveSolution naive(g, dat);

    random_queries(n, q, contour_aggregator, naive);
}

void test2(int n = 1000, int q = 10000) {
    auto g = random_tree(n);
    std::vector<int> dat(n);
    std::iota(dat.begin(), dat.end(), 1);

    suisen::PointSetRangeContourSum<int, op, e> contour_aggregator(dat);
    for (int i = 0; i < n; ++i) for (int j : g[i]) if (i < j) {
        contour_aggregator.add_edge(i, j);
    }

    contour_aggregator.build();
    NaiveSolution naive(g, dat);

    random_queries(n, q, contour_aggregator, naive);
}

int main() {
    test1();
    test2();
    std::cout << "Hello World" << std::endl;
    return 0;
}
Back to top page