cp-library-cpp

This documentation is automatically generated by online-judge-tools/verification-helper

View the Project on GitHub suisen-cp/cp-library-cpp

:heavy_check_mark: 遅延伝播セグメント木
(library/datastructure/segment_tree/lazy_segment_tree.hpp)

遅延伝播セグメント木

Depends on

Required by

Verified with

Code

#ifndef SUISEN_LAZY_SEGMENT_TREE
#define SUISEN_LAZY_SEGMENT_TREE

#include <cassert>
#include <vector>
#include "library/util/update_proxy_object.hpp"

namespace suisen {
    template <typename T, T(*op)(T, T), T(*e)(), typename F, T(*mapping)(F, T), F(*composition)(F, F), F(*id)(), bool enable_beats = false>
    struct LazySegmentTree {
        using value_type = T;
        using operator_type = F;

        LazySegmentTree() : LazySegmentTree(0) {}
        LazySegmentTree(int n) : LazySegmentTree(std::vector<value_type>(n, e())) {}
        LazySegmentTree(const std::vector<value_type>& init) : n(init.size()), m(ceil_pow2(n)), lg(__builtin_ctz(m)), data(2 * m, e()), lazy(m, id()) {
            std::copy(init.begin(), init.end(), data.begin() + m);
            for (int k = m - 1; k > 0; --k) update(k);
        }

        void apply(int l, int r, const operator_type& f) {
            assert(0 <= l and l <= r and r <= n);
            push_to(l, r);
            for (int l2 = l + m, r2 = r + m; l2 < r2; l2 >>= 1, r2 >>= 1) {
                if (l2 & 1) all_apply(l2++, f);
                if (r2 & 1) all_apply(--r2, f);
            }
            update_from(l, r);
        }
        void apply(int p, const operator_type& f) {
            (*this)[p] = mapping(f, get(p));
        }

        value_type operator()(int l, int r) {
            assert(0 <= l and l <= r and r <= n);
            push_to(l, r);
            value_type res_l = e(), res_r = e();
            for (l += m, r += m; l < r; l >>= 1, r >>= 1) {
                if (l & 1) res_l = op(res_l, data[l++]);
                if (r & 1) res_r = op(data[--r], res_r);
            }
            return op(res_l, res_r);
        }

        value_type prod(int l, int r) { return (*this)(l, r); }
        value_type prefix_prod(int r) { return (*this)(0, r); }
        value_type suffix_prod(int l) { return (*this)(l, m); }
        value_type all_prod() const { return data[1]; }

        auto operator[](int p) {
            assert(0 <= p and p < n);
            push_to(p);
            return UpdateProxyObject{ data[p + m], [this, p] { update_from(p); } };
        }
        value_type get(int p) { return (*this)[p]; }
        void set(int p, value_type v) { (*this)[p] = v; }

        template <typename Pred, constraints_t<std::is_invocable_r<bool, Pred, value_type>> = nullptr>
        int max_right(int l, Pred g) {
            assert(0 <= l && l <= n);
            assert(g(e()));
            if (l == n) return n;
            l += m;
            for (int i = lg; i >= 1; --i) push(l >> i);
            value_type sum = e();
            do {
                while ((l & 1) == 0) l >>= 1;
                if (not g(op(sum, data[l]))) {
                    while (l < m) {
                        push(l);
                        l = 2 * l;
                        if (g(op(sum, data[l]))) sum = op(sum, data[l++]);
                    }
                    return l - m;
                }
                sum = op(sum, data[l++]);
            } while ((l & -l) != l);
            return n;
        }
        template <bool(*f)(value_type)>
        int max_right(int l) { return max_right(l, f); }

        template <typename Pred, constraints_t<std::is_invocable_r<bool, Pred, value_type>> = nullptr>
        int min_left(int r, Pred g) {
            assert(0 <= r && r <= n);
            assert(g(e()));
            if (r == 0) return 0;
            r += m;
            for (int i = lg; i >= 1; --i) push(r >> i);
            value_type sum = e();
            do {
                r--;
                while (r > 1 and (r & 1)) r >>= 1;
                if (not g(op(data[r], sum))) {
                    while (r < m) {
                        push(r);
                        r = 2 * r + 1;
                        if (g(op(data[r], sum))) sum = op(data[r--], sum);
                    }
                    return r + 1 - m;
                }
                sum = op(data[r], sum);
            } while ((r & -r) != r);
            return 0;
        }
        template <bool(*f)(value_type)>
        int min_left(int l) { return min_left(l, f); }
    private:
        int n, m, lg;
        std::vector<value_type> data;
        std::vector<operator_type> lazy;

        static constexpr int ceil_pow2(int n) {
            int m = 1;
            while (m < n) m <<= 1;
            return m;
        }

        void all_apply(int k, const operator_type& f) {
            data[k] = mapping(f, data[k]);
            if (k < m) {
                lazy[k] = composition(f, lazy[k]);
                if constexpr (enable_beats) if (data[k].fail) push(k), update(k);
            }
        }
        void push(int k) {
            all_apply(2 * k, lazy[k]), all_apply(2 * k + 1, lazy[k]);
            lazy[k] = id();
        }
        void push_to(int p) {
            p += m;
            for (int i = lg; i >= 1; --i) push(p >> i);
        }
        void push_to(int l, int r) {
            l += m, r += m;
            int li = __builtin_ctz(l), ri = __builtin_ctz(r);
            for (int i = lg; i >= li + 1; --i) push(l >> i);
            for (int i = lg; i >= ri + 1; --i) push(r >> i);
        }
        void update(int k) {
            data[k] = op(data[2 * k], data[2 * k + 1]);
        }
        void update_from(int p) {
            p += m;
            for (int i = 1; i <= lg; ++i) update(p >> i);
        }
        void update_from(int l, int r) {
            l += m, r += m;
            int li = __builtin_ctz(l), ri = __builtin_ctz(r);
            for (int i = li + 1; i <= lg; ++i) update(l >> i);
            for (int i = ri + 1; i <= lg; ++i) update(r >> i);
        }
    };
}

#endif // SUISEN_LAZY_SEGMENT_TREE
#line 1 "library/datastructure/segment_tree/lazy_segment_tree.hpp"



#include <cassert>
#include <vector>
#line 1 "library/util/update_proxy_object.hpp"



#line 1 "library/type_traits/type_traits.hpp"



#include <limits>
#include <iostream>
#include <type_traits>

namespace suisen {
    template <typename ...Constraints> using constraints_t = std::enable_if_t<std::conjunction_v<Constraints...>, std::nullptr_t>;

    template <typename T, typename = std::nullptr_t> struct bitnum { static constexpr int value = 0; };
    template <typename T> struct bitnum<T, constraints_t<std::is_integral<T>>> { static constexpr int value = std::numeric_limits<std::make_unsigned_t<T>>::digits; };
    template <typename T> static constexpr int bitnum_v = bitnum<T>::value;
    template <typename T, size_t n> struct is_nbit { static constexpr bool value = bitnum_v<T> == n; };
    template <typename T, size_t n> static constexpr bool is_nbit_v = is_nbit<T, n>::value;

    template <typename T, typename = std::nullptr_t> struct safely_multipliable { using type = T; };
    template <typename T> struct safely_multipliable<T, constraints_t<std::is_signed<T>, is_nbit<T, 32>>> { using type = long long; };
    template <typename T> struct safely_multipliable<T, constraints_t<std::is_signed<T>, is_nbit<T, 64>>> { using type = __int128_t; };
    template <typename T> struct safely_multipliable<T, constraints_t<std::is_unsigned<T>, is_nbit<T, 32>>> { using type = unsigned long long; };
    template <typename T> struct safely_multipliable<T, constraints_t<std::is_unsigned<T>, is_nbit<T, 64>>> { using type = __uint128_t; };
    template <typename T> using safely_multipliable_t = typename safely_multipliable<T>::type;

    template <typename T, typename = void> struct rec_value_type { using type = T; };
    template <typename T> struct rec_value_type<T, std::void_t<typename T::value_type>> {
        using type = typename rec_value_type<typename T::value_type>::type;
    };
    template <typename T> using rec_value_type_t = typename rec_value_type<T>::type;

    template <typename T> class is_iterable {
        template <typename T_> static auto test(T_ e) -> decltype(e.begin(), e.end(), std::true_type{});
        static std::false_type test(...);
    public:
        static constexpr bool value = decltype(test(std::declval<T>()))::value;
    };
    template <typename T> static constexpr bool is_iterable_v = is_iterable<T>::value;
    template <typename T> class is_writable {
        template <typename T_> static auto test(T_ e) -> decltype(std::declval<std::ostream&>() << e, std::true_type{});
        static std::false_type test(...);
    public:
        static constexpr bool value = decltype(test(std::declval<T>()))::value;
    };
    template <typename T> static constexpr bool is_writable_v = is_writable<T>::value;
    template <typename T> class is_readable {
        template <typename T_> static auto test(T_ e) -> decltype(std::declval<std::istream&>() >> e, std::true_type{});
        static std::false_type test(...);
    public:
        static constexpr bool value = decltype(test(std::declval<T>()))::value;
    };
    template <typename T> static constexpr bool is_readable_v = is_readable<T>::value;
} // namespace suisen

#line 5 "library/util/update_proxy_object.hpp"

namespace suisen {

template <typename T, typename UpdateFunc, constraints_t<std::is_invocable<UpdateFunc>> = nullptr>
struct UpdateProxyObject {
    public:
        UpdateProxyObject(T &v, UpdateFunc update) : v(v), update(update) {}
        operator T() const { return v; }
        auto& operator++() && { ++v, update(); return *this; }
        auto& operator--() && { --v, update(); return *this; }
        auto& operator+=(const T &val) && { v += val, update(); return *this; }
        auto& operator-=(const T &val) && { v -= val, update(); return *this; }
        auto& operator*=(const T &val) && { v *= val, update(); return *this; }
        auto& operator/=(const T &val) && { v /= val, update(); return *this; }
        auto& operator%=(const T &val) && { v %= val, update(); return *this; }
        auto& operator =(const T &val) && { v  = val, update(); return *this; }
        auto& operator<<=(const T &val) && { v <<= val, update(); return *this; }
        auto& operator>>=(const T &val) && { v >>= val, update(); return *this; }
        template <typename F, constraints_t<std::is_invocable_r<T, F, T>> = nullptr>
        auto& apply(F f) && { v = f(v), update(); return *this; }
    private:
        T &v;
        UpdateFunc update;
};

} // namespace suisen


#line 7 "library/datastructure/segment_tree/lazy_segment_tree.hpp"

namespace suisen {
    template <typename T, T(*op)(T, T), T(*e)(), typename F, T(*mapping)(F, T), F(*composition)(F, F), F(*id)(), bool enable_beats = false>
    struct LazySegmentTree {
        using value_type = T;
        using operator_type = F;

        LazySegmentTree() : LazySegmentTree(0) {}
        LazySegmentTree(int n) : LazySegmentTree(std::vector<value_type>(n, e())) {}
        LazySegmentTree(const std::vector<value_type>& init) : n(init.size()), m(ceil_pow2(n)), lg(__builtin_ctz(m)), data(2 * m, e()), lazy(m, id()) {
            std::copy(init.begin(), init.end(), data.begin() + m);
            for (int k = m - 1; k > 0; --k) update(k);
        }

        void apply(int l, int r, const operator_type& f) {
            assert(0 <= l and l <= r and r <= n);
            push_to(l, r);
            for (int l2 = l + m, r2 = r + m; l2 < r2; l2 >>= 1, r2 >>= 1) {
                if (l2 & 1) all_apply(l2++, f);
                if (r2 & 1) all_apply(--r2, f);
            }
            update_from(l, r);
        }
        void apply(int p, const operator_type& f) {
            (*this)[p] = mapping(f, get(p));
        }

        value_type operator()(int l, int r) {
            assert(0 <= l and l <= r and r <= n);
            push_to(l, r);
            value_type res_l = e(), res_r = e();
            for (l += m, r += m; l < r; l >>= 1, r >>= 1) {
                if (l & 1) res_l = op(res_l, data[l++]);
                if (r & 1) res_r = op(data[--r], res_r);
            }
            return op(res_l, res_r);
        }

        value_type prod(int l, int r) { return (*this)(l, r); }
        value_type prefix_prod(int r) { return (*this)(0, r); }
        value_type suffix_prod(int l) { return (*this)(l, m); }
        value_type all_prod() const { return data[1]; }

        auto operator[](int p) {
            assert(0 <= p and p < n);
            push_to(p);
            return UpdateProxyObject{ data[p + m], [this, p] { update_from(p); } };
        }
        value_type get(int p) { return (*this)[p]; }
        void set(int p, value_type v) { (*this)[p] = v; }

        template <typename Pred, constraints_t<std::is_invocable_r<bool, Pred, value_type>> = nullptr>
        int max_right(int l, Pred g) {
            assert(0 <= l && l <= n);
            assert(g(e()));
            if (l == n) return n;
            l += m;
            for (int i = lg; i >= 1; --i) push(l >> i);
            value_type sum = e();
            do {
                while ((l & 1) == 0) l >>= 1;
                if (not g(op(sum, data[l]))) {
                    while (l < m) {
                        push(l);
                        l = 2 * l;
                        if (g(op(sum, data[l]))) sum = op(sum, data[l++]);
                    }
                    return l - m;
                }
                sum = op(sum, data[l++]);
            } while ((l & -l) != l);
            return n;
        }
        template <bool(*f)(value_type)>
        int max_right(int l) { return max_right(l, f); }

        template <typename Pred, constraints_t<std::is_invocable_r<bool, Pred, value_type>> = nullptr>
        int min_left(int r, Pred g) {
            assert(0 <= r && r <= n);
            assert(g(e()));
            if (r == 0) return 0;
            r += m;
            for (int i = lg; i >= 1; --i) push(r >> i);
            value_type sum = e();
            do {
                r--;
                while (r > 1 and (r & 1)) r >>= 1;
                if (not g(op(data[r], sum))) {
                    while (r < m) {
                        push(r);
                        r = 2 * r + 1;
                        if (g(op(data[r], sum))) sum = op(data[r--], sum);
                    }
                    return r + 1 - m;
                }
                sum = op(data[r], sum);
            } while ((r & -r) != r);
            return 0;
        }
        template <bool(*f)(value_type)>
        int min_left(int l) { return min_left(l, f); }
    private:
        int n, m, lg;
        std::vector<value_type> data;
        std::vector<operator_type> lazy;

        static constexpr int ceil_pow2(int n) {
            int m = 1;
            while (m < n) m <<= 1;
            return m;
        }

        void all_apply(int k, const operator_type& f) {
            data[k] = mapping(f, data[k]);
            if (k < m) {
                lazy[k] = composition(f, lazy[k]);
                if constexpr (enable_beats) if (data[k].fail) push(k), update(k);
            }
        }
        void push(int k) {
            all_apply(2 * k, lazy[k]), all_apply(2 * k + 1, lazy[k]);
            lazy[k] = id();
        }
        void push_to(int p) {
            p += m;
            for (int i = lg; i >= 1; --i) push(p >> i);
        }
        void push_to(int l, int r) {
            l += m, r += m;
            int li = __builtin_ctz(l), ri = __builtin_ctz(r);
            for (int i = lg; i >= li + 1; --i) push(l >> i);
            for (int i = lg; i >= ri + 1; --i) push(r >> i);
        }
        void update(int k) {
            data[k] = op(data[2 * k], data[2 * k + 1]);
        }
        void update_from(int p) {
            p += m;
            for (int i = 1; i <= lg; ++i) update(p >> i);
        }
        void update_from(int l, int r) {
            l += m, r += m;
            int li = __builtin_ctz(l), ri = __builtin_ctz(r);
            for (int i = li + 1; i <= lg; ++i) update(l >> i);
            for (int i = ri + 1; i <= lg; ++i) update(r >> i);
        }
    };
}
Back to top page