This documentation is automatically generated by online-judge-tools/verification-helper
#include "library/datastructure/segment_tree/lazy_segment_tree.hpp"
#ifndef SUISEN_LAZY_SEGMENT_TREE
#define SUISEN_LAZY_SEGMENT_TREE
#include <cassert>
#include <vector>
#include "library/util/update_proxy_object.hpp"
namespace suisen {
template <typename T, T(*op)(T, T), T(*e)(), typename F, T(*mapping)(F, T), F(*composition)(F, F), F(*id)(), bool enable_beats = false>
struct LazySegmentTree {
using value_type = T;
using operator_type = F;
LazySegmentTree() : LazySegmentTree(0) {}
LazySegmentTree(int n) : LazySegmentTree(std::vector<value_type>(n, e())) {}
LazySegmentTree(const std::vector<value_type>& init) : n(init.size()), m(ceil_pow2(n)), lg(__builtin_ctz(m)), data(2 * m, e()), lazy(m, id()) {
std::copy(init.begin(), init.end(), data.begin() + m);
for (int k = m - 1; k > 0; --k) update(k);
}
void apply(int l, int r, const operator_type& f) {
assert(0 <= l and l <= r and r <= n);
push_to(l, r);
for (int l2 = l + m, r2 = r + m; l2 < r2; l2 >>= 1, r2 >>= 1) {
if (l2 & 1) all_apply(l2++, f);
if (r2 & 1) all_apply(--r2, f);
}
update_from(l, r);
}
void apply(int p, const operator_type& f) {
(*this)[p] = mapping(f, get(p));
}
value_type operator()(int l, int r) {
assert(0 <= l and l <= r and r <= n);
push_to(l, r);
value_type res_l = e(), res_r = e();
for (l += m, r += m; l < r; l >>= 1, r >>= 1) {
if (l & 1) res_l = op(res_l, data[l++]);
if (r & 1) res_r = op(data[--r], res_r);
}
return op(res_l, res_r);
}
value_type prod(int l, int r) { return (*this)(l, r); }
value_type prefix_prod(int r) { return (*this)(0, r); }
value_type suffix_prod(int l) { return (*this)(l, m); }
value_type all_prod() const { return data[1]; }
auto operator[](int p) {
assert(0 <= p and p < n);
push_to(p);
return UpdateProxyObject{ data[p + m], [this, p] { update_from(p); } };
}
value_type get(int p) { return (*this)[p]; }
void set(int p, value_type v) { (*this)[p] = v; }
template <typename Pred, constraints_t<std::is_invocable_r<bool, Pred, value_type>> = nullptr>
int max_right(int l, Pred g) {
assert(0 <= l && l <= n);
assert(g(e()));
if (l == n) return n;
l += m;
for (int i = lg; i >= 1; --i) push(l >> i);
value_type sum = e();
do {
while ((l & 1) == 0) l >>= 1;
if (not g(op(sum, data[l]))) {
while (l < m) {
push(l);
l = 2 * l;
if (g(op(sum, data[l]))) sum = op(sum, data[l++]);
}
return l - m;
}
sum = op(sum, data[l++]);
} while ((l & -l) != l);
return n;
}
template <bool(*f)(value_type)>
int max_right(int l) { return max_right(l, f); }
template <typename Pred, constraints_t<std::is_invocable_r<bool, Pred, value_type>> = nullptr>
int min_left(int r, Pred g) {
assert(0 <= r && r <= n);
assert(g(e()));
if (r == 0) return 0;
r += m;
for (int i = lg; i >= 1; --i) push(r >> i);
value_type sum = e();
do {
r--;
while (r > 1 and (r & 1)) r >>= 1;
if (not g(op(data[r], sum))) {
while (r < m) {
push(r);
r = 2 * r + 1;
if (g(op(data[r], sum))) sum = op(data[r--], sum);
}
return r + 1 - m;
}
sum = op(data[r], sum);
} while ((r & -r) != r);
return 0;
}
template <bool(*f)(value_type)>
int min_left(int l) { return min_left(l, f); }
private:
int n, m, lg;
std::vector<value_type> data;
std::vector<operator_type> lazy;
static constexpr int ceil_pow2(int n) {
int m = 1;
while (m < n) m <<= 1;
return m;
}
void all_apply(int k, const operator_type& f) {
data[k] = mapping(f, data[k]);
if (k < m) {
lazy[k] = composition(f, lazy[k]);
if constexpr (enable_beats) if (data[k].fail) push(k), update(k);
}
}
void push(int k) {
all_apply(2 * k, lazy[k]), all_apply(2 * k + 1, lazy[k]);
lazy[k] = id();
}
void push_to(int p) {
p += m;
for (int i = lg; i >= 1; --i) push(p >> i);
}
void push_to(int l, int r) {
l += m, r += m;
int li = __builtin_ctz(l), ri = __builtin_ctz(r);
for (int i = lg; i >= li + 1; --i) push(l >> i);
for (int i = lg; i >= ri + 1; --i) push(r >> i);
}
void update(int k) {
data[k] = op(data[2 * k], data[2 * k + 1]);
}
void update_from(int p) {
p += m;
for (int i = 1; i <= lg; ++i) update(p >> i);
}
void update_from(int l, int r) {
l += m, r += m;
int li = __builtin_ctz(l), ri = __builtin_ctz(r);
for (int i = li + 1; i <= lg; ++i) update(l >> i);
for (int i = ri + 1; i <= lg; ++i) update(r >> i);
}
};
}
#endif // SUISEN_LAZY_SEGMENT_TREE
#line 1 "library/datastructure/segment_tree/lazy_segment_tree.hpp"
#include <cassert>
#include <vector>
#line 1 "library/util/update_proxy_object.hpp"
#line 1 "library/type_traits/type_traits.hpp"
#include <limits>
#include <iostream>
#include <type_traits>
namespace suisen {
template <typename ...Constraints> using constraints_t = std::enable_if_t<std::conjunction_v<Constraints...>, std::nullptr_t>;
template <typename T, typename = std::nullptr_t> struct bitnum { static constexpr int value = 0; };
template <typename T> struct bitnum<T, constraints_t<std::is_integral<T>>> { static constexpr int value = std::numeric_limits<std::make_unsigned_t<T>>::digits; };
template <typename T> static constexpr int bitnum_v = bitnum<T>::value;
template <typename T, size_t n> struct is_nbit { static constexpr bool value = bitnum_v<T> == n; };
template <typename T, size_t n> static constexpr bool is_nbit_v = is_nbit<T, n>::value;
template <typename T, typename = std::nullptr_t> struct safely_multipliable { using type = T; };
template <typename T> struct safely_multipliable<T, constraints_t<std::is_signed<T>, is_nbit<T, 32>>> { using type = long long; };
template <typename T> struct safely_multipliable<T, constraints_t<std::is_signed<T>, is_nbit<T, 64>>> { using type = __int128_t; };
template <typename T> struct safely_multipliable<T, constraints_t<std::is_unsigned<T>, is_nbit<T, 32>>> { using type = unsigned long long; };
template <typename T> struct safely_multipliable<T, constraints_t<std::is_unsigned<T>, is_nbit<T, 64>>> { using type = __uint128_t; };
template <typename T> using safely_multipliable_t = typename safely_multipliable<T>::type;
template <typename T, typename = void> struct rec_value_type { using type = T; };
template <typename T> struct rec_value_type<T, std::void_t<typename T::value_type>> {
using type = typename rec_value_type<typename T::value_type>::type;
};
template <typename T> using rec_value_type_t = typename rec_value_type<T>::type;
template <typename T> class is_iterable {
template <typename T_> static auto test(T_ e) -> decltype(e.begin(), e.end(), std::true_type{});
static std::false_type test(...);
public:
static constexpr bool value = decltype(test(std::declval<T>()))::value;
};
template <typename T> static constexpr bool is_iterable_v = is_iterable<T>::value;
template <typename T> class is_writable {
template <typename T_> static auto test(T_ e) -> decltype(std::declval<std::ostream&>() << e, std::true_type{});
static std::false_type test(...);
public:
static constexpr bool value = decltype(test(std::declval<T>()))::value;
};
template <typename T> static constexpr bool is_writable_v = is_writable<T>::value;
template <typename T> class is_readable {
template <typename T_> static auto test(T_ e) -> decltype(std::declval<std::istream&>() >> e, std::true_type{});
static std::false_type test(...);
public:
static constexpr bool value = decltype(test(std::declval<T>()))::value;
};
template <typename T> static constexpr bool is_readable_v = is_readable<T>::value;
} // namespace suisen
#line 5 "library/util/update_proxy_object.hpp"
namespace suisen {
template <typename T, typename UpdateFunc, constraints_t<std::is_invocable<UpdateFunc>> = nullptr>
struct UpdateProxyObject {
public:
UpdateProxyObject(T &v, UpdateFunc update) : v(v), update(update) {}
operator T() const { return v; }
auto& operator++() && { ++v, update(); return *this; }
auto& operator--() && { --v, update(); return *this; }
auto& operator+=(const T &val) && { v += val, update(); return *this; }
auto& operator-=(const T &val) && { v -= val, update(); return *this; }
auto& operator*=(const T &val) && { v *= val, update(); return *this; }
auto& operator/=(const T &val) && { v /= val, update(); return *this; }
auto& operator%=(const T &val) && { v %= val, update(); return *this; }
auto& operator =(const T &val) && { v = val, update(); return *this; }
auto& operator<<=(const T &val) && { v <<= val, update(); return *this; }
auto& operator>>=(const T &val) && { v >>= val, update(); return *this; }
template <typename F, constraints_t<std::is_invocable_r<T, F, T>> = nullptr>
auto& apply(F f) && { v = f(v), update(); return *this; }
private:
T &v;
UpdateFunc update;
};
} // namespace suisen
#line 7 "library/datastructure/segment_tree/lazy_segment_tree.hpp"
namespace suisen {
template <typename T, T(*op)(T, T), T(*e)(), typename F, T(*mapping)(F, T), F(*composition)(F, F), F(*id)(), bool enable_beats = false>
struct LazySegmentTree {
using value_type = T;
using operator_type = F;
LazySegmentTree() : LazySegmentTree(0) {}
LazySegmentTree(int n) : LazySegmentTree(std::vector<value_type>(n, e())) {}
LazySegmentTree(const std::vector<value_type>& init) : n(init.size()), m(ceil_pow2(n)), lg(__builtin_ctz(m)), data(2 * m, e()), lazy(m, id()) {
std::copy(init.begin(), init.end(), data.begin() + m);
for (int k = m - 1; k > 0; --k) update(k);
}
void apply(int l, int r, const operator_type& f) {
assert(0 <= l and l <= r and r <= n);
push_to(l, r);
for (int l2 = l + m, r2 = r + m; l2 < r2; l2 >>= 1, r2 >>= 1) {
if (l2 & 1) all_apply(l2++, f);
if (r2 & 1) all_apply(--r2, f);
}
update_from(l, r);
}
void apply(int p, const operator_type& f) {
(*this)[p] = mapping(f, get(p));
}
value_type operator()(int l, int r) {
assert(0 <= l and l <= r and r <= n);
push_to(l, r);
value_type res_l = e(), res_r = e();
for (l += m, r += m; l < r; l >>= 1, r >>= 1) {
if (l & 1) res_l = op(res_l, data[l++]);
if (r & 1) res_r = op(data[--r], res_r);
}
return op(res_l, res_r);
}
value_type prod(int l, int r) { return (*this)(l, r); }
value_type prefix_prod(int r) { return (*this)(0, r); }
value_type suffix_prod(int l) { return (*this)(l, m); }
value_type all_prod() const { return data[1]; }
auto operator[](int p) {
assert(0 <= p and p < n);
push_to(p);
return UpdateProxyObject{ data[p + m], [this, p] { update_from(p); } };
}
value_type get(int p) { return (*this)[p]; }
void set(int p, value_type v) { (*this)[p] = v; }
template <typename Pred, constraints_t<std::is_invocable_r<bool, Pred, value_type>> = nullptr>
int max_right(int l, Pred g) {
assert(0 <= l && l <= n);
assert(g(e()));
if (l == n) return n;
l += m;
for (int i = lg; i >= 1; --i) push(l >> i);
value_type sum = e();
do {
while ((l & 1) == 0) l >>= 1;
if (not g(op(sum, data[l]))) {
while (l < m) {
push(l);
l = 2 * l;
if (g(op(sum, data[l]))) sum = op(sum, data[l++]);
}
return l - m;
}
sum = op(sum, data[l++]);
} while ((l & -l) != l);
return n;
}
template <bool(*f)(value_type)>
int max_right(int l) { return max_right(l, f); }
template <typename Pred, constraints_t<std::is_invocable_r<bool, Pred, value_type>> = nullptr>
int min_left(int r, Pred g) {
assert(0 <= r && r <= n);
assert(g(e()));
if (r == 0) return 0;
r += m;
for (int i = lg; i >= 1; --i) push(r >> i);
value_type sum = e();
do {
r--;
while (r > 1 and (r & 1)) r >>= 1;
if (not g(op(data[r], sum))) {
while (r < m) {
push(r);
r = 2 * r + 1;
if (g(op(data[r], sum))) sum = op(data[r--], sum);
}
return r + 1 - m;
}
sum = op(data[r], sum);
} while ((r & -r) != r);
return 0;
}
template <bool(*f)(value_type)>
int min_left(int l) { return min_left(l, f); }
private:
int n, m, lg;
std::vector<value_type> data;
std::vector<operator_type> lazy;
static constexpr int ceil_pow2(int n) {
int m = 1;
while (m < n) m <<= 1;
return m;
}
void all_apply(int k, const operator_type& f) {
data[k] = mapping(f, data[k]);
if (k < m) {
lazy[k] = composition(f, lazy[k]);
if constexpr (enable_beats) if (data[k].fail) push(k), update(k);
}
}
void push(int k) {
all_apply(2 * k, lazy[k]), all_apply(2 * k + 1, lazy[k]);
lazy[k] = id();
}
void push_to(int p) {
p += m;
for (int i = lg; i >= 1; --i) push(p >> i);
}
void push_to(int l, int r) {
l += m, r += m;
int li = __builtin_ctz(l), ri = __builtin_ctz(r);
for (int i = lg; i >= li + 1; --i) push(l >> i);
for (int i = lg; i >= ri + 1; --i) push(r >> i);
}
void update(int k) {
data[k] = op(data[2 * k], data[2 * k + 1]);
}
void update_from(int p) {
p += m;
for (int i = 1; i <= lg; ++i) update(p >> i);
}
void update_from(int l, int r) {
l += m, r += m;
int li = __builtin_ctz(l), ri = __builtin_ctz(r);
for (int i = li + 1; i <= lg; ++i) update(l >> i);
for (int i = ri + 1; i <= lg; ++i) update(r >> i);
}
};
}